Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Approach for Mutual Inductance Identification of Wireless Power Transfer System in Electric Vehicle Charging Applications

2019-04-02
2019-01-0866
As a key parameter of fundamental electrical, mutual inductance always used to characterize the overall performance of wireless power transfer (WPT) system in electric vehicle charging applications. However, in real case, factors such as parking misalignments, load variations and intrusion of foreign objects would result in a variation of mutual inductance between both coils, which may adversely impact on transmitted power and transmission efficiency. Therefore, in this paper, we propose to identify mutual inductance parameter with the least square method (LSM) based on the equivalent circuit model. In section II, COMSOL is adopted to simulate mutual inductance variation with the change of lateral offset. In section III, the differential equation is derived from the state space equation of the WPT system. Through identifying the process parameters, the mutual inductance of coils can be obtained by the functional relationship between them.
Journal Article

Investigation on the Impact of High-Temperature Calendar and Cyclic Aging on Battery Overcharge Performance

2022-03-29
2022-01-0698
With the degradation of lithium-ion batteries, the battery safety performance changes, which further influences the safe working window. In this paper, the pouch ternary lithium-ion battery whose rated capacity is 4.2 Ah is used as the research object to investigate the impact of the high-temperature calendar and cyclic aging on tolerance performance. The overcharge-to-thermal-runaway test is performed on the fresh cell and aged cell (90% SOH). The inflection point of voltage for aged cells appears earlier than that of the fresh cell, while the voltage corresponding to the inflection point is the same for them, which means that the voltage at which lithium plating occurs is the same. However, the voltage plateau and the crest voltage before thermal runaway of aged cell are significantly higher than that of the fresh cell. Besides, ohmic heat, reversible heat, and side reaction heat make contribution to the thermal runaway triggering.
Technical Paper

Parameter Identification of Self-Inductance in Wireless Power Transfer System for Electric Vehicles

2018-04-03
2018-01-0463
For a practical pad design, a magnetic shielding layer is imperative which is made of ferrite, aluminum or some other metallic material. However, once the magnetic shielding layer is added, not only the mutual inductance but also the self-inductance of the coupling coils vary with the lateral misalignment which is inevitable for a human driver. The change of self-inductance will also result in the mistuning problem in the resonant circuit, which can significantly reduce the transmission efficiency of the whole wireless power transfer (WPT) system. This paper proposed a method of parameter identification of self-inductance based on the least square in order to solve the mistuning problem. In order to verify the proposed method, both the simulation model and the experiment set-up are built.
Technical Paper

Revealing the Impact of Mechanical Pressure on Lithium-Ion Pouch Cell Formation and the Evolution of Pressure During the Formation Process

2024-04-09
2024-01-2192
The formation is a crucial step in the production process of lithium-ion batteries (LIBs), during which the solid electrolyte interphase (SEI) is formed on the surface of the anode particles to passivate the electrode. It determines the performance of the battery, including its capacity and lifetime. A meticulously designed formation protocol is essential to regulate and optimize the stability of the SEI, ultimately achieving the optimal performance of the battery. Current research on formation protocols in lithium-ion batteries primarily focuses on temperature, current, and voltage windows. However, there has been limited investigation into the influence of different initial pressures on the formation process, and the evolution of cell pressure during formation remains unclear. In this study, a pressure-assisted formation device for lithium-ion pouch cells is developed, equipped with pressure sensors.
X