Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

A New 4.5 Liter In-Line 6 Cylinder Engine, 1FZ-FE for the Toyota Land Cruiser

1993-03-01
930876
A new 4.5 liter in-line 6 cylinder engine,1 FZ-FE has been developed for the Toyota Land Cruiser. To obtain high power, fuel efficient engine, we adopted the most advanced Toyota technologies, such as Toyota original 4 Valve DOHC system with scissors gear between camshafts, compact combustion chamber with smooth inlet and outlet system, KCS and so on. The engine produces 212 HP at 4600 rpm and 275 ft-lbs at 3200 rpm. Aluminum cylinder head,short skirt cylinder block stiffened with aluminum oil pan give the engine light weight and make it rigid enough to have low vibration and quietness. And we also designed every engine part appropriately so as to make the engine durable enough in severe operating condition of off-road vehicle.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

1995-02-01
950044
In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
Technical Paper

A Simulation Test Method for Deterioration of FKM Compounds Engine Crankshaft Oil Seals

1992-10-01
922373
A laboratory scale simulation test method was developed to evaluate deterioration of radial lip seals of fluoroelastomer (FKM) compounds for engine crankshafts. The investigation of the collected radial lip seals of FKM compounds from the field with service up to 450,000km indicated that the only symptom of deterioration is a decrease of lip interference. This deterioration was not duplicated under conventional test conditions using an oil seal test machine because sludge build up at the seal lip caused oil leakage. However, revised test conditions make it possible to duplicate the deterioration experienced in the field. An immersion test using a radial lip seal assembled with the mating shaft was newly developed. This test method was found to be useful to evaluate deterioration of radial lip seals using FKM compounds. Oil additives affect the deterioration of lip seal materials significantly. Therefore, immersion tests of four different oils were conducted to evaluate this effect.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

A Study of Stratified Charge Combustion Characteristics in New Concept Direct Injection SI Gasoline Engine

2001-03-05
2001-01-0734
A new stratified charge system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle and a shell-shaped piston cavity. This system, basically classified into the wall-guided mixture preparation concept that leads air/fuel mixture to the spark plug periphery by means of spray penetration and piston cavity configuration without an extra intake air flow controlling system, obtained wide engine operating area with stratified combustion and high output performance. This report presents the characteristics of stratified mixture formation and combustion, especially the important factor for achieving stable stratified combustion in the high-speed region, which have been clarified through analytical studies.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Technical Paper

Active Engine Mount for a Large Amplitude of Idling Vibration

1995-05-01
951298
An active engine mount using a piezo actuator for a large vibrational amplitude is discussed. As a piezo actuator has a small displacement, the active mount requires a mechanism to increase the displacement of the piezo actuator to sufficiently counteract vibration. This paper describes in detail the construction of the prototype and the background theory from which the increase in displacement was achieved. Secondary, it describes a proving test performed on an experimental device that simulates the transfer of vibration from the engine to the chassis through the piezo active mounts. Finally it reports the decrease in floor vibration achieved when a piezo active mount was installed on an experimental vehicle.
Technical Paper

An Approach to Improve Engine Sound

1988-02-01
880083
Recently engine sound quality is becoming more noticeable as noise level in a vehicle passenger compartment has been decreasing. It is necessary to reduce such discomforting noise as rumbling noise in order to improve engine sound quality. This paper describes the experimental study to find out causes of rumbling noise in an engine structure and several investigations to reduce rumbling noise. Some new approaches have been introduced to evaluate the influence of an combustion impact, the movement of a crankshaft, timing of rumbling noise and so on. The result shows that the primary cause of rumbling noise is the movement of a crankshaft due to the impact of combustion and next is the vibration characteristics of the engine-transmission assembly (power plant). Finally superior engine sound quality is achieved by increasing counterweights and stiffness of a crankshaft and also by optimizing the spark advance and improving vibration characteristics of various engine parts.
Technical Paper

An Experimental Study on Fuel Behavior During the Cold Start Period of a Direct Injection Spark Ignition Engine

2001-03-05
2001-01-0969
An experimental study was carried out in order to reduce engine-out HC emissions from a direct injection spark ignition (DISI) engine during the cold start period. The objectives of this study were to investigate the fuel behavior quantified with an analytic method and to propose some practical techniques to reduce the cylinder-wetting fuel volume and engine-out HC emissions. Compared to the MPI (Multi Port Fuel Injection) engine, required fuel volume for DISI engine was reduced during the cold start because intake port wall-wetting was not generated. On the other hand, a large volume of cylinder wetting fuel resulted in engine-out HC emissions. Injection timing, atomization and vaporization of injected fuel affected the cylinder-wetting fuel volume. Above all, Injection of the heated fuel provided good results. In summary, engine-out HC emissions from DISI engine was reduced compared to that of MPI engine during the cold-start period.
Journal Article

An Intake Valve Deposit (IVD) Engine Test Development to Investigate Deposit Build-Up Mechanism Using a Real Engine

2017-10-08
2017-01-2291
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
Technical Paper

An Integration Approach on Powertrain Control System

1989-02-01
890762
Engine control systems were the precursor of scale automotive electronics systems using microcomputers. Toyota Motor Corporation introduced high - level, total control of the power train by applying system integration through introducing a multi - CPU system to the 1988 MY Toyota Camry. Integration in the ECU has been promoted to parallel with system integration. By adopting single - chip microcomputers, monolithic ICs, and hybrid ICs all designed and developed for car electronics, and semiconductor barometric pressure sensors for car electron into ECU's. etc. ever - expandable functions can be provided in a smaller and more lightweight ECU package with higher reliability.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
Technical Paper

Analysis of Cylinder Bore Distortion During Engine Operation

1995-02-01
950541
A calculation method of the bore distortion during engine operation was developed. This method can consider the sliding effect of the cylinder head on the top dock of the cylinder block. The bore distortion during engine operation calculated by this method agrees with that measured by Fujimoto, better than that calculated by conventional method. Calculated results for a Toyota 4-cylinder in-line 1.5L engine showed that thermal distortion has larger effects on the cylinder bore distortion during engine operation than cylinder head clamping distortion.
Technical Paper

Analysis of Fuel Flow and Spray Atomization in Slit Nozzle for Direct Injection SI Gasoline Engines

2006-04-03
2006-01-1000
The slit nozzle in the fuel injection valve for a direct injection spark ignition gasoline engine forms a thin, fan-shaped spray. The fan-shaped spray is characterized by high dispersion, comparatively high penetration, and fine atomization. This enables it to form a stable air-fuel mixture. However, further improvement of engine performance requires that the spray characteristics (particularly the level of atomization) be improved. Since the spray characteristics are strongly influenced by the fuel flow within the nozzle, it was clarified this effect by visual analyses of the fuel flow inside the nozzle using enlarged acrylic slit nozzles. The results demonstrated that vortices that are formed within the nozzle sac are continuously propagated in a periodic manner within the sac and that they influence the streamline of fuel flow from the sac to the slit.
Technical Paper

Analysis of Oil Consumption at High Engine Speed by Visualization of the Piston Ring Behaviors

2000-10-16
2000-01-2877
In internal combustion engine, it is well-known that oil infiltrates the combustion chamber through the clearance between the piston ring and the cylinder bore with vertical reciprocating motion of the piston, leading to an increase in oil consumption. The deformation of the cylinder bore is inevitable to some extent in the actual engine because of the tightening of cylinder head bolt and heat load._As to the function of the piston ring, it is desirable that it conforms to such bore deformation. The author et al. made a glass cylinder engine in which closed piston ring gap could be visualized, based on the idea that piston ring conformability to the sliding surface of bore could be evaluated from minute changes of the piston ring gap. This newly-devised visualized engine was an in-line 4-cylinder engine, capable of running up to 6,000 rpm, in which the closed gap of piston ring could be observed minutely during engine operation.
Technical Paper

Analysis of Oil Consumption by Observing Oil Behavior Around Piston Ring Using a Glass Cylinder Engine

1989-09-01
892107
The reduction of engine oil consumption rate is one of the important concerns for automotive engineers. However, it has been difficult to solve this subject, since the oil consumption mechanism has not yet been elucidated. In this study, to clarify the oil loss mechanism via the piston rings, a transparent glass cylinder engine was used to observe oil behavior between cylinder wall and piston surface. For photographic observation, a high speed camera, a still camera. and a TV camera were used. Since the new photographic system by using TV camera with a synchro - flash and a synchro-memory was applied, it was also possible to observe the oil behavior in detail. Moreover, a new visual method by which colored oil was injected from the various points on the piston surface and traced was developed for easy analysis of oil movement around the piston ring.
Journal Article

Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature

2011-08-30
2011-01-1746
Hybrid vehicles (HVs) are becoming more widely used. Since HVs supplement engine drive with motor power, the lubricant oil temperature remains at a lower level than in a conventional gasoline vehicle. This study analyzed the effect of cylinder bore temperature and lubricant oil temperature on engine friction. The results showed that, although the lubricant oil temperature was not relevant, the bore temperature had significant effect on piston friction. It was found that raising the temperature of the middle section of the cylinder bore was the most effective way of reducing piston friction.
X