Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

A Low-Speed In-Vehicle Network for Body Electronics

1992-02-01
920231
The authors developed a low-speed in-vehicle network for the body control system on passenger cars, where the most remarkable effects to reduce the number of wire harnesses could be expected. First, the authors analyzed the body control system to clarify the specifications required to build a low-speed in-vehicle network. Then the authors worked out optimum communication protocol, placing emphasis on cost reduction which is the key to expanding the applications of the low-speed in-vehicle network over wider fields. The low-speed in-vehicle network was evaluated for its performance through simulation and on-vehicle tests, and proved the practical validity of the concept. It was also verified that introducing the low-speed in-vehicle network has a satisfactory effect to reduce the number of wire harnesses.
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

A New 4.5 Liter In-Line 6 Cylinder Engine, 1FZ-FE for the Toyota Land Cruiser

1993-03-01
930876
A new 4.5 liter in-line 6 cylinder engine,1 FZ-FE has been developed for the Toyota Land Cruiser. To obtain high power, fuel efficient engine, we adopted the most advanced Toyota technologies, such as Toyota original 4 Valve DOHC system with scissors gear between camshafts, compact combustion chamber with smooth inlet and outlet system, KCS and so on. The engine produces 212 HP at 4600 rpm and 275 ft-lbs at 3200 rpm. Aluminum cylinder head,short skirt cylinder block stiffened with aluminum oil pan give the engine light weight and make it rigid enough to have low vibration and quietness. And we also designed every engine part appropriately so as to make the engine durable enough in severe operating condition of off-road vehicle.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

1995-02-01
950044
In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
Technical Paper

A Simulation Method of Rear Axle Gear Noise

1991-05-01
911041
A new experimental method, that enables to estimate the body and driveline sensitivity to unit transmitting error of a hypoid gear for automotive rear axle gear noise, has been developed. Measurements were made by exciting the tooth of the drive-pinion gear and that of the ring gear separately using the special devices designed with regard to simulation of acceleration and deceleration. The characteristic of this method is to estimate the forces at the contact point of the gears. Estimation of these forces is carried out under the condition that the higher stiffness is provided by the tooth of the drive-pinion gear and that of the ring gear, compared with the stiffness of the driveshafts and that of the propeller shaft etc., and relative angular displacement of the torsional vibration between the teeth of the drive-pinion gear and those of the ring gear is constant.
Technical Paper

A Simulation Test Method for Deterioration of FKM Compounds Engine Crankshaft Oil Seals

1992-10-01
922373
A laboratory scale simulation test method was developed to evaluate deterioration of radial lip seals of fluoroelastomer (FKM) compounds for engine crankshafts. The investigation of the collected radial lip seals of FKM compounds from the field with service up to 450,000km indicated that the only symptom of deterioration is a decrease of lip interference. This deterioration was not duplicated under conventional test conditions using an oil seal test machine because sludge build up at the seal lip caused oil leakage. However, revised test conditions make it possible to duplicate the deterioration experienced in the field. An immersion test using a radial lip seal assembled with the mating shaft was newly developed. This test method was found to be useful to evaluate deterioration of radial lip seals using FKM compounds. Oil additives affect the deterioration of lip seal materials significantly. Therefore, immersion tests of four different oils were conducted to evaluate this effect.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

A Study of Noise in Vehicle Passenger Compartment during Acceleration

1985-05-15
850965
A discomforting noise can sometimes be heard in a vehicle passenger compartment during acceleration which can be annoying to passengers. We call this noise a “rumbling noise”. A detailed study of the rumbling noise spectrum has clarified the generating mechanism of the rumbling noise and the relation between the spectral structure and the tone. In order to analyze the rumbling noise, we simulated it with electrically synthesized noise. This method showed that at the times when the noise is heard there are always more than three discrete harmonics which are half an order harmonics of the engine revolution. The sensation of discomfort depends on the phase, frequency and magnitude of each frequency component. To evaluate the noise quantitatively, we also analyzed the shape of the time domain noise envelope. The envelope shape has a good correlation with the feelings of discomfort.
Technical Paper

A Study of Stratified Charge Combustion Characteristics in New Concept Direct Injection SI Gasoline Engine

2001-03-05
2001-01-0734
A new stratified charge system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle and a shell-shaped piston cavity. This system, basically classified into the wall-guided mixture preparation concept that leads air/fuel mixture to the spark plug periphery by means of spray penetration and piston cavity configuration without an extra intake air flow controlling system, obtained wide engine operating area with stratified combustion and high output performance. This report presents the characteristics of stratified mixture formation and combustion, especially the important factor for achieving stable stratified combustion in the high-speed region, which have been clarified through analytical studies.
Technical Paper

A Study on Friction Materials for Brake Squeal Reduction by Nanotechnology

2008-10-12
2008-01-2581
Brake squeal is caused by dynamic instability, which is influenced by its dynamic unstable structure and small disturbance of friction force variation. Recently, FE Analysis of brake squeal is applied for brake design refinements, which is based on dynamic instability theory. As same as the refinement of brake structure is required for brake squeal reduction, the refinement of pad materials is also required for brake effectiveness and brake squeal reduction. It is well known that friction film, which is composed of polymers like phenol formaldehyde resin and so on, influences for friction coefficient. Therefore it is expected that the refinement of polymers in pad materials enable higher brake effectiveness and less brake squeal. In this paper, Molecular Dynamics is applied for the friction force variation of polymers in pad materials. The MD simulation results suggest the reduction method of friction force variation of polymers.
Technical Paper

A Technology of Weight Reduction for the Aluminum Cast Wheel

1993-11-01
931885
In the field of automobile disk wheels, demands for aluminum wheels have been increasing for the reason of ride comfort and better appearance. And over 90 percent of luxurious passenger cars are equipped with aluminum wheels. This trend is spurred also by the demand for higher fuel efficiency for the cause of environmental protection, which calls for weight reduction of automobiles. This paper reports our research on manufacturing light-weight, high-quality aluminum cast wheels; covering the entire process from basic design to casting, and placing emphasis on the following three points. 1) Determination of optimum wheel configuration through computer simulation 2) Selection of optimum material composition 3) Optimization of the thin plate casting conditions Combination of the above technologies developed for the purpose of weight reduction resulted in the weight reduction of approximately 20% over the conventional aluminum wheels.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Technical Paper

Aerodynamic Effects of an Overtaking Articulated Heavy Goods Vehicle on Car-Trailer-An Analysis to Improve Controllability

1987-10-01
871919
It is well known and a common experience among drivers that controllability and stability of a car-trailer combination is affected when an articulated Heavy Goods Vehicle overtakes. In this paper, aerodynamic effects to a car-trailer combination when it is overtaken by an articulated HGV, have been analyzed experimentally using 1/20 scale models in wind tunnel, and a method to suppress this phenomenon has been investigated. The dynamic behaivor of a car-trailer combination is simulated by a simple mathematical model. The result shows that a car-trailer combination can be stable following the addittion of aerodynamic devices to each side of the vehicle. This simulated result is verified by the on-read test.
Journal Article

An Application of Shape Optimization to Brake Squeal Phenomena

2015-09-27
2015-01-2658
The present paper describes an application of non-parametric shape optimization to disc brake squeal phenomena. A main problem is defined as complex eigenvalue problem in which the real part of the complex eigenvalue causing the brake squeal is chosen as an objective cost function. The Fre´chet derivative of the objective cost function with respect to the domain variation, named as the shape derivative of the objective cost function, is evaluated using the solution of the main problem and the adjoint problem. A selection criterion of the adoptive mode number in component mode synthesis (CMS), which is used in the main problem, is presented in order to reduce the computational error in complex eigenvalue pairs. A scheme to solve the shape optimization problem is presented using an iterative algorithm based on the H1 gradient method for reshaping. For an application of the optimization method, a numerical example of a practical disc brake model is presented.
Technical Paper

An Approach to Improve Engine Sound

1988-02-01
880083
Recently engine sound quality is becoming more noticeable as noise level in a vehicle passenger compartment has been decreasing. It is necessary to reduce such discomforting noise as rumbling noise in order to improve engine sound quality. This paper describes the experimental study to find out causes of rumbling noise in an engine structure and several investigations to reduce rumbling noise. Some new approaches have been introduced to evaluate the influence of an combustion impact, the movement of a crankshaft, timing of rumbling noise and so on. The result shows that the primary cause of rumbling noise is the movement of a crankshaft due to the impact of combustion and next is the vibration characteristics of the engine-transmission assembly (power plant). Finally superior engine sound quality is achieved by increasing counterweights and stiffness of a crankshaft and also by optimizing the spark advance and improving vibration characteristics of various engine parts.
Technical Paper

An Experimental Set Up Development for Brake Squeal Basic Research

2013-09-30
2013-01-2032
The vehicle requires high brake performance and mass reduction of disc brake for vehicle fuel economy. Then disc brake will be designed by downsizing of disc and high friction coefficient pad materials. It is well known that disc brake squeal is frequently caused by high friction coefficient pad materials. Disc brake squeal is caused by dynamic unstable system under disturbance of friction force variation. Today, disc brake squeal comes to be simulated by FEA, but it is very difficult to put so many dynamic unstable solutions into stable solutions. Therefore it is very important to make it clear the influence of friction force variation. This paper describes the development of experimental set up for disc brake squeal basic research. First, the equation of motion in low-frequency disc brake squeal around 2 kHz is derived.
Journal Article

An Intake Valve Deposit (IVD) Engine Test Development to Investigate Deposit Build-Up Mechanism Using a Real Engine

2017-10-08
2017-01-2291
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
X