Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Technical Paper

A Java Implementation of Future Automotive Systems Technology Simulator (FASTSim) Fuel Economy Simulation Code Modules

2018-04-03
2018-01-0412
Future Automotive Systems Technology Simulator (FASTSim) is a free and open-source tool developed by National Renewable Energy Lab (NREL). Among the attractive capabilities of the FASTSim is that it can perform computationally efficient fuel economy simulations of automotive vehicles with reasonable accuracy for standard or arbitrary drive cycles. The modeling capability includes vehicles with various types of powertrains such as: conventional vehicles (CVs), hybrid-electric vehicles (HEVs), plugin hybrid electric vehicles (PHEVs) and battery-only electric vehicles (BEVs). The public version of FASTSim available from NREL is implemented in Excel, which achieves the goal of good accessibility to a broad audience, but has some limitations, including: i) bottleneck in computations when importing arbitrary drive cycles, ii) slower computations in general than other scripting or programming languages, and iii) less portable to integration with other applications and/or other platforms.
Technical Paper

A Molecular Dynamics Analysis of the Traction Fluids

2007-04-16
2007-01-1016
Non-equilibrium all-atom MD simulations are used to study the traction properties of hydrocarbon fluids. A fluid layer is confined between two solid Fe plates under the constant normal force of 1.0 GPa. Traction simulations are performed by applying a relative sliding motion to the Fe plates. Shear behaviors of nine hydrocarbon fluids are simulated on a sufficiently large film thickness of 6.7 nm, and succeeded in reproducing the order of the experimental traction coefficients. The dynamic mechanism of the momentum transfer on layers of fluid molecules are analyzed focusing on the intermolecular interactions (density profile, orientation factor, pair-correlation function) and intramolecular interactions (intramolecular interaction energy, conformation change of alicyclic ring). In contrast to the case of n-hexane, which shows low traction due to a fragile chain-like interaction, other mechanisms are obtained in the high traction molecules of cyclohexane, dicyclohexyl and santotrac 50.
Technical Paper

A SEA-Based Optimizing Approach for Sound Package Design

2003-05-05
2003-01-1556
Statistical Energy Analysis (SEA) is a promising tool for developing an efficient sound package design for reducing airborne interior noise at high frequencies. The optimal sound package, however, is not directly predicted by using the SEA vehicle model alone and therefore requires parametric studies of sound package configurations. This paper describes an effective method for using SEA modeling to achieve the desired interior noise level targets. A mathematical model, expressed by one equation, is derived on the assumption that the directions of the power flows are known in the SEA model. This equation describes the relationship between sound package properties and the resulting interior noise level. Using the relationship between weight and performance of sound package, an efficient configuration can be determined. The predicted sound pressure level of the vehicle interior with the optimized sound package correlated well to the experimental data for the case presented in this paper.
Technical Paper

A Silicon Micromachined Gyroscope and Accelerometer for Vehicle Stability Control System

2004-03-08
2004-01-1113
A silicon micromachined gyroscope (angular rate sensor, yaw rate sensor) and accelerometer for vehicle stability control system is presented. The 5.1mm×4.7mm sensor chip is fabricated with a silicon micromachining process using a SOI (Silicon on Insulator) silicon wafer and a deep reactive ion etching. The sensor chip has a pair of resonators which are mechanically coupled and function as a tuning fork. The resonators are driven by electrostatic force and their movements are detected by capacitively sensing angstrom displacements. This sensor chip works not only as a gyroscope but also as an accelerometer with a single sensor chip. The sensor unit consists of the sensor chip above, a signal processing IC, a microcomputer and an EEPROM. sigma-delta analog-to-digital conversion (sigma-delta ADC) is adopted to realize the digital calibration of sensor properties.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

A Study of Reduction for Brake Squeal in Disc In-Plane Mode

2012-09-17
2012-01-1825
Brake squeal is a phenomenon of self-induced vibration of the brake components during braking. There are many kinds of brake squeal cases whose mechanisms require acting on a various number of potential root causes. Brake squeal phenomena can be generally separated into 2 main mode types related to the direction of disc vibration involved: in-plane mode and out-of-plane mode. For out-of-plane mode, a number of existing countermeasures can be potentially applied after characterization of the squeal occurrence condition by direct experiment or simulation analysis[1,2,3,4]. However, as there are many possible mechanisms and root causes for the in-plane modes[5,6,7,8,9,10,11,12,13], it is generally necessary to perform a detailed analysis of the vibration mechanism before implementing a countermeasure.
Technical Paper

A Study of Triple Skyhook Control for Semi-Active Suspension System

2019-04-02
2019-01-0168
The research described in this paper focused on improving occupant ride comfort and road holding by suppressing sprung and unsprung vibration using a semi-active suspension system. It has been reported that occupants tend to perceive vertical vibrations in a frequency range between 4 and 8 Hz as uncomfortable (described below as the “mid-frequency range”). Previous research into semi-active suspension system has focused on reducing vibration in this mid-frequency range, as well as close to the sprung resonance frequency of between 1 and 2 Hz. Skyhook damper (SH) control is a typical ride comfort control used to damp vibration close to the sprung resonance frequency. However, since SH control is not capable of damping vibration in the mid-frequency range, the shock absorbers are configured with a lower damping factor. This helps to achieve a good balance between reducing vibration close to the sprung mass resonance and in the mid-frequency range.
Technical Paper

A Target Cascading Method Using Model Based Simulation in Early Stage of Vehicle Development

2019-04-02
2019-01-0836
In the early stages of vehicle development, it is important for decision makers to understand a feasible constraint region that satisfies all system level requirements. The purpose of this paper is to propose a target cascading method to solve for a feasible design region which satisfies all constraints of the system based on model based simulation. In this method, the feasible design region is explored by using both global optimization methods and active learning techniques. In optimization problems, the inverse problem for understanding feasibility for specific designs is defined and solved. To determine the objective functions of the inverse problem, an index representing the achievement level of constraints from system requirements is introduced. To predict feasible regions in the specific design space, a surrogate model of minimized values of the index is trained by using a kriging model.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Analysis of Degradation Mechanism of Lead-Free Materials

2009-04-20
2009-01-0260
The use of lead-free (Pb-free) solder and plating in onboard electronic components has accelerated rapidly in recent years, but solutions have yet to be found for the issues of whisker generation in tin (Sn) plating and crack initiation in Pb-free solder, despite widespread research efforts. Analysis of the whisker generation mechanism has focused on internal energy levels and crystal orientation, and analysis of the crack initiation mechanism in Pb-free solder has examined changes in the grain boundaries of Sn crystals.
Technical Paper

Analysis of Friction Coefficient Variation with Moisture between Friction Surfaces

2016-04-05
2016-01-0411
If a vehicle is left in a humid environment, the coefficient of friction between the brake pads and discs increases, generating a discomforting noise during braking called brake squeal. It is assumed that this increase in the coefficient of friction in a humid environment is the effect of moisture penetrating between the brake friction surfaces. Therefore, this paper analyzes the factors causing coefficient of friction variation with moisture between the friction surfaces by dynamic observation of these surfaces. The observation was achieved by changing the disc materials from cast iron to borosilicate glass. One side of the glass brake disc was pushed onto the brake pad and the sliding surface was observed from the opposite side by a charge coupled device (CCD) camera. First, a preliminary test was carried out in a dry state using two pad materials with different wear properties to select the appropriate pad for observing the friction surfaces.
Technical Paper

Analysis of Personal Routing Preference from Probe Data in Cloud

2020-04-14
2020-01-0740
Routing quality always dominates the top 20% of in vehicle- navigation customer complaints. In vehicle navigation routing engines do not customize results based on customer behavior. For example, some users prefer the quickest route while some prefer direct routes. This is because in vehicle navigation systems are traditionally embedded systems. Toyota announced that new model vehicles in JP, CN, US will be connected with routing function switching from the embedded device to the cloud in which there are plenty of probe data uploaded from the vehicles. Probe data makes it possible to analyze user preferences and customize routing profile for users. This paper describes a method to analyze the user preferences from the probe data uploaded to the cloud. The method includes data collection, the analysis model of route scoring and user profiling. Furthermore, the evaluation of the model will be introduced at the end of the paper.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Automatic Transmission Control Based on Estimation of Sporty Driving Intention

2013-04-08
2013-01-0483
The purpose of this research is to develop an automatic shift control method that emulates an experienced driver's manual shift maneuver which enhances driving performance during sporty driving. Driver control maneuvers and vehicle behavior were observed throughout the process of braking, cornering, and accelerating out of a corner on a winding test track. Close correlations were found between driving maneuvers, longitudinal and lateral acceleration, and the selected engine speed. Based on the analysis, an index is proposed for estimating the intention of the driver to drive in a sporty manner. This index consists of the magnitude of acceleration in a friction circle and the maximum longitudinal acceleration restricted by the performance of the power train. An automatic transmission control based on the estimated driving intention was then developed to achieve the necessary and sufficient available force.
Journal Article

Benefit Estimation of a Lane Departure Warning System using ASSTREET

2012-04-16
2012-01-0289
It is known that the collisions caused by lane departure events account for range of percentages among the countries studied. To help prevent such collisions, the Lane Departure Warning (LDW) system has started to be introduced in production vehicles, but there is little research on its benefits and limitations so far. In this paper we performed an in-depth analysis of the collisions and driver-related essential variables for the lane-departure collision scenarios and demonstrated the benefit estimation process. The benefit of the LDW system is estimated by comparing lane departure events when the vehicle has no LDW, and how they change with the addition of LDW. The event without LDW was modeled in 5 phases: (1) before departure, (2) starting of the departure, (3) departed the lane, (4) at the impact with an object, and, (5) after the impact. “An extensive analysis was conducted of traffic crash data compiled by the Institute for Traffic Accident Research and Data Analysis (ITARDA).
Technical Paper

Cabin Comfort Improvement and Heating Energy Reduction under Cold-Condition by Using Radiative Heater

2022-03-29
2022-01-0202
Since the regulations of CO2 emissions have been tightened in each country recently, each automotive manufacturer has responded by bringing competitive technologies that maximize efficiency while promoting vehicle electrification such as xEV. Not only the efficiency, we need to meet or exceed occupant performance and comfort expectations. The climate control system expends a large amount of energy to keep a comfortable environment, having a significant impact on fuel consumption and EV driving range. Therefore, many manufacturers try to save energy and improve occupant comfort quickly by using not only the conventional convective heating by HVAC but also the conductive heating to heat the human body directly such as seat and steering wheel heater. In this study, a radiative heater, which is more efficient than a convective heating to warm anterior thigh and shin where a conductive heating cannot warm, was applied to vehicle.
Technical Paper

Characteristics of Vehicle Stability Control's Effectiveness Derived from the Analysis of Traffic Accident Data Statistics

2004-10-18
2004-21-0074
Vehicle Stability Control (VSC) is a system designed to help drivers when skidding or unstable vehicle behavior is about to occur. We have studied the characteristics of VSC in reducing accidents by analyzing accident data statistics in Japan. The results indicate that VSC is effective in reducing single car accidents and head-on collisions with other automobiles. In these accidents, the analysis showed that VSC may be more helpful in reducing a larger number of accidents in the higher speed range where vehicle dynamics plays a greater part. It also showed that VSC may contribute to reducing accidents that result from unstable vehicle behavior. VSC demonstrated more effectiveness in reducing accidents involving lateral & rear impacts than those of frontal impacts, and in reducing accidents on wet & snowy/icy roads than those on dry roads.
Technical Paper

Countermeasures for Mitigating Power Fluctuations in High-Power Hybrid System

2006-04-03
2006-01-1340
The GS 450h that went on sale in 2006 uses a more powerful motor equipped with a new transmission called Two-stage motor speed reduction device to achieve superlative power performance. However, the increase in motor power meant that new technologies had to be developed to stabilize the system. This paper describes a high-speed power balance control technology that maintains a stable power balance even when the motor speed fluctuates sharply due to tire slippage or other factors, as well as a control technology that maintains a stable power balance even as the motor speed changes continuously during shifting.
X