Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Technical Paper

A New Method of Engine Sound Design for Car Interior Noise Using a Psychoacoustic Index

2004-03-08
2004-01-0406
In this study, a new practical design method (tool) for engine sound quality in a car interior is proposed. The tool can automatically create the target interior sound using the psychoacoustic index ‘powerfulness’ based on subjective tests. Moreover, it can calculate the intake noise characteristic to create the target interior sound and select the suitable intake specification from the prepared database. By using this method sound engineering can be easily and effectively carried out without manufacturing an experimental car.
Technical Paper

A Robustness-Focused Shape Optimization Method for Intake Ports

2009-06-15
2009-01-1777
Merging a CAE shape optimization system and a concept Taguchi method SN-ratio index, a robustness-focused automated shape optimization method has been developed. Applying this method to diesel intake ports, with mold position tolerance set as the error factor, SN-ratio was defined for swirl stability. As a result of the optimization provided by a multi-objective genetic algorithm, simultaneous improvement of flux, swirl rotation and SN ratio was achieved.
Technical Paper

A SEA-Based Optimizing Approach for Sound Package Design

2003-05-05
2003-01-1556
Statistical Energy Analysis (SEA) is a promising tool for developing an efficient sound package design for reducing airborne interior noise at high frequencies. The optimal sound package, however, is not directly predicted by using the SEA vehicle model alone and therefore requires parametric studies of sound package configurations. This paper describes an effective method for using SEA modeling to achieve the desired interior noise level targets. A mathematical model, expressed by one equation, is derived on the assumption that the directions of the power flows are known in the SEA model. This equation describes the relationship between sound package properties and the resulting interior noise level. Using the relationship between weight and performance of sound package, an efficient configuration can be determined. The predicted sound pressure level of the vehicle interior with the optimized sound package correlated well to the experimental data for the case presented in this paper.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Technical Paper

A Study of Reduction for Brake Squeal in Disc In-Plane Mode

2012-09-17
2012-01-1825
Brake squeal is a phenomenon of self-induced vibration of the brake components during braking. There are many kinds of brake squeal cases whose mechanisms require acting on a various number of potential root causes. Brake squeal phenomena can be generally separated into 2 main mode types related to the direction of disc vibration involved: in-plane mode and out-of-plane mode. For out-of-plane mode, a number of existing countermeasures can be potentially applied after characterization of the squeal occurrence condition by direct experiment or simulation analysis[1,2,3,4]. However, as there are many possible mechanisms and root causes for the in-plane modes[5,6,7,8,9,10,11,12,13], it is generally necessary to perform a detailed analysis of the vibration mechanism before implementing a countermeasure.
Technical Paper

A Study of Triple Skyhook Control for Semi-Active Suspension System

2019-04-02
2019-01-0168
The research described in this paper focused on improving occupant ride comfort and road holding by suppressing sprung and unsprung vibration using a semi-active suspension system. It has been reported that occupants tend to perceive vertical vibrations in a frequency range between 4 and 8 Hz as uncomfortable (described below as the “mid-frequency range”). Previous research into semi-active suspension system has focused on reducing vibration in this mid-frequency range, as well as close to the sprung resonance frequency of between 1 and 2 Hz. Skyhook damper (SH) control is a typical ride comfort control used to damp vibration close to the sprung resonance frequency. However, since SH control is not capable of damping vibration in the mid-frequency range, the shock absorbers are configured with a lower damping factor. This helps to achieve a good balance between reducing vibration close to the sprung mass resonance and in the mid-frequency range.
Technical Paper

A Study of Vibration Characteristics on Final Gear Unit

1990-02-01
900393
Whinning gear noise(final gear noise), one of the causes for automobile interior noise is due to the exciting force of final gear kit and as a general countermeasure for this problem, a reduction of resonance level in transfer system and better meshing of gears have been utilized. However,vibration characteristics of final gear unit have not been considered much in this case. Authors have executed impacting test on final gear unit and confirmed its vibration characteristics. Based on this fact,vibration model consisting of bearings and gears spring system was constructed to evaluate vibration characteristics of final gear unit along with the results obtained from final gear unit of front engine,rear drive passenger car.
Technical Paper

A Study on Energy-Absorbing Mechanism of Plastic Ribs

1998-09-29
982346
This paper describes development of a numerical simulation method for the FMVSS 201 testing. This method considers not only deformation but also fracture of plastic materials. a simplified calculation method for predicting the load during impact of absorbing plastic materials was introduced from the numerical simulation results. By applying this simplified calculator method trial and error in development would be reduced.
Technical Paper

A Target Cascading Method Using Model Based Simulation in Early Stage of Vehicle Development

2019-04-02
2019-01-0836
In the early stages of vehicle development, it is important for decision makers to understand a feasible constraint region that satisfies all system level requirements. The purpose of this paper is to propose a target cascading method to solve for a feasible design region which satisfies all constraints of the system based on model based simulation. In this method, the feasible design region is explored by using both global optimization methods and active learning techniques. In optimization problems, the inverse problem for understanding feasibility for specific designs is defined and solved. To determine the objective functions of the inverse problem, an index representing the achievement level of constraints from system requirements is introduced. To predict feasible regions in the specific design space, a surrogate model of minimized values of the index is trained by using a kriging model.
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Technical Paper

Analysis for Relationship between Vehicle NOx Emission and Roadside NO2 Concentration

2008-04-14
2008-01-0755
NO2 sources of roadside atmosphere at Matsubarabashi monitoring station in Tokyo were investigated analytically. The result showed that contribution of urban background is dominant from November to February and NO oxidation with O3 has large contribution from April to September. NO2 air quality standard will be achieved by reducing vehicle NOx emission to post-new long-term regulation level. The analytical method was verified by using our developed simulation system, which consists of micro traffic flow analyzer and CFD-based, unsteady-state diffusion with chemical reaction solver.
Technical Paper

Analysis for Vibration Caused by Starter Shaft Resonance

2016-04-05
2016-01-1319
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration using virtual engine specifications and a virtual vehicle frame. In our former study, we showed the 1D physical power plant model with electrical starter, battery that can predict combustion transient torque, combustion heat energy and fuel efficiency. The simulation result agreed with measured data. For idling stop system, the noise and vibration during start up is important factor for salability of the vehicle. In this paper, as an application of the 1D physical power plant model (engine model), we will show the result of analysis that is starter shaft resonance and the effect on the engine mount vibration of restarting from idle stop. First, an engine model for 3.5L 6cyl NA engine was developed by energy-based model using VHDL-AMS. Here, VHDL-AMS is modeling language registered in IEC international standard (IEC61691-6) to realize multi physics on 1D simulation.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Technical Paper

Analysis of Noise in Silent Chain Drives

1987-11-08
871199
To analyze chain noise which occurs in transfers using silent chain, analysis considering the energy of the noise source is effective. We can simulate chain noise by calculating a dimensionless coefficient of “chain noise energy” consisting of two contributing factors: the energy of the collision when the chain meshes with the sprocket, and fluctuation in the chain speed.
Journal Article

Analysis of Piston Friction in Internal Combustion Engine

2013-10-14
2013-01-2515
The purpose of this study is to analyze the piston skirt friction reduction effect of a diamond-like carbon (DLC)-coated wrist pin. The floating liner method and elasto-hydrodynamic lubrication (EHL) simulation were used to analyze piston skirt friction. The experimental results showed that a DLC-coated wrist pin reduced cylinder liner friction, and that this reduction was particularly large at low engine speeds and large pin offset conditions. Friction was particularly reduced at around the top and bottom dead center positions (TDC and BDC). EHL simulation confirmed that a DLC-coated wrist pin affects the piston motion and reduces the contact pressure between the piston skirt and cylinder liner.
Technical Paper

Analysis of Unburned Hydrocarbon Generated from Wall under Lean Combustion

2020-04-14
2020-01-0295
Combustion of a lean air-fuel mixture diluted with a large amount of air or Exhaust Gas Recirculation (EGR) gas is one of the important technologies that can reduce thermal NOx and improve gasoline engine fuel economy by reducing cooling loss. On the other hand, lean combustion increases unburned Hydro Carbon (HC) and unburned loss compared to stoichiometric combustion. This is because lean combustion reduces the burning rate of the air-fuel mixture and forms a thick quenching layer near the wall surface. In this study, the relationship between the thickness of the unburned HC and the excess air ratio is analyzed using Laser Induced Fluorescence (LIF) method and Computational Fluid Dynamic (CFD) of combustion. The HC distribution near the engine liner when the excess air ratio is increased is investigated by LIF. As a result, it is found that the quenching distance of the flame in the cylinder is larger for lean conditions than the general single-wall quenching relationship.
Technical Paper

Application of Electromagnetic Simulation to Electronic Key System Development

2016-04-05
2016-01-1363
Because of its convenience, electronic key systems are adopted by many automakers. Ensuring the performance of low frequency (LF) and ultra-high frequency (UHF) electromagnetic waves is a critical part of system development. One of the most important performance aspects of this system is ensuring communication in the required area, and the tuning process is a key factor in the development phase. Conventionally, a large amount of work hours and cost is required for this tuning process, which usually adopts a cut-and-try approach based on technical experience to satisfy the required specifications in the LF band. The development process was successfully shortened by applying the newly developed LF electromagnetic simulation technique described in this paper.
X