Refine Your Search

Topic

Author

Search Results

Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Advanced Driver Assistance: Chances and Limitations on the Way to Improved Active Safety

2007-04-16
2007-01-1738
Advanced Driver Assistance systems support the driver in his driving tasks. They can be designed to enhance the driver's performance and/or to take over unpleasant tasks from the driver. An important optimization goal is to maintain the driver's activation at a moderate level, avoiding both stress and boredom. Functions requiring a situational interpretation based on the vehicle environment are associated with lower performance reliability than typical stability control systems. Thus, driver assistance systems are designed assuming that drivers will monitor the assistance function while maintaining full control over the vehicle, including the opportunity to override as required. Advanced driver assistance systems have a substantial potential to increase active safety performance of the vehicle, i.e., to mitigate or avoid traffic accidents.
Technical Paper

Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

2016-04-05
2016-01-0124
Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
Technical Paper

Automatic Transmission Control Based on Estimation of Sporty Driving Intention

2013-04-08
2013-01-0483
The purpose of this research is to develop an automatic shift control method that emulates an experienced driver's manual shift maneuver which enhances driving performance during sporty driving. Driver control maneuvers and vehicle behavior were observed throughout the process of braking, cornering, and accelerating out of a corner on a winding test track. Close correlations were found between driving maneuvers, longitudinal and lateral acceleration, and the selected engine speed. Based on the analysis, an index is proposed for estimating the intention of the driver to drive in a sporty manner. This index consists of the magnitude of acceleration in a friction circle and the maximum longitudinal acceleration restricted by the performance of the power train. An automatic transmission control based on the estimated driving intention was then developed to achieve the necessary and sufficient available force.
Journal Article

Benefit Estimation of a Lane Departure Warning System using ASSTREET

2012-04-16
2012-01-0289
It is known that the collisions caused by lane departure events account for range of percentages among the countries studied. To help prevent such collisions, the Lane Departure Warning (LDW) system has started to be introduced in production vehicles, but there is little research on its benefits and limitations so far. In this paper we performed an in-depth analysis of the collisions and driver-related essential variables for the lane-departure collision scenarios and demonstrated the benefit estimation process. The benefit of the LDW system is estimated by comparing lane departure events when the vehicle has no LDW, and how they change with the addition of LDW. The event without LDW was modeled in 5 phases: (1) before departure, (2) starting of the departure, (3) departed the lane, (4) at the impact with an object, and, (5) after the impact. “An extensive analysis was conducted of traffic crash data compiled by the Institute for Traffic Accident Research and Data Analysis (ITARDA).
Technical Paper

Characteristics of Vehicle Stability Control's Effectiveness Derived from the Analysis of Traffic Accident Data Statistics

2004-10-18
2004-21-0074
Vehicle Stability Control (VSC) is a system designed to help drivers when skidding or unstable vehicle behavior is about to occur. We have studied the characteristics of VSC in reducing accidents by analyzing accident data statistics in Japan. The results indicate that VSC is effective in reducing single car accidents and head-on collisions with other automobiles. In these accidents, the analysis showed that VSC may be more helpful in reducing a larger number of accidents in the higher speed range where vehicle dynamics plays a greater part. It also showed that VSC may contribute to reducing accidents that result from unstable vehicle behavior. VSC demonstrated more effectiveness in reducing accidents involving lateral & rear impacts than those of frontal impacts, and in reducing accidents on wet & snowy/icy roads than those on dry roads.
Technical Paper

Design Concept and Advantages of Steer-by-Wire System

2008-04-14
2008-01-0493
Because of recent advances in steering control technology, steer-by-wire systems have continued to become more realistic. The principal issue for these steer-by-wire systems is considered to be promoting reliability through the construction of a design concept that can be utilized appropriately by drivers. This paper first describes the flow between the concept and system structure, and proposes a steer-by-wire system with a mechanical backup mechanism as one possibility. This paper also describes an investigation into its potential advantages using an experimental vehicle installed with the proposed system structure. The potential advantages of steer-by-wire are improved vehicle driving performance, vehicle maneuverability, and the feasibility of innovative packaging and design. In order to make improved maneuverability and design innovations compatible, it is critical to achieve steering characteristics that require little maneuvering angle.
Technical Paper

Design Tool and Software Platform for Time-Triggered Network Systems

2006-10-16
2006-21-0041
This paper describes a design tool and a software platform for FlexRay systems that are investigated in Nagoya University and are proposed to JasPar. The design tool reads the specification of a system as a task graph that consists of a set of tasks and messages among them. The design tool, then, allocates the tasks to ECUs and schedules the messages on a FlexRay network. The software platform consists of a middleware called time-trigger module (TTM) which dispatches time-triggered tasks, a communication middleware for a time-triggered network (TT-COM), a network management middleware for FlexRay (FlexRay-NM), and a device driver for FlexRay controller.
Technical Paper

Development of Crawl Control

2008-04-14
2008-01-1227
Toyota Motor Corporation has already designed and developed vehicle brake control systems for relatively low speed off-road driving, such as Downhill Assist Control, Hill-start Assist Control and Active Traction Control. Though off-road utility is improved by virtue of these systems, in specific situations actual performance still depends on driving technique since the driver is required to control the accelerator pedal. Toyota has integrated these existing systems, and developed a new driving technology for off-road driving called “Crawl Control.” Crawl Control automatically modulates brake torque and drive torque to help keep the vehicle speed constant and slow. Unskilled drivers can thereby attain improved capabilities in places where high-level driving techniques are required. This system also reduces the effort required to control the accelerator and the brake pedal. This paper presents a new control algorithm for the realization of this Crawl Control system.
Journal Article

Development of High-Performance Driving Simulator

2009-04-20
2009-01-0450
A number of active safety systems are already developed to support drivers’ decision and action to help avoid accidents, but further enhancement of those active safety systems cannot be accomplished without increasing our understanding on driver behaviors and their interaction with vehicle systems. For this reason, a state-of-art driving simulator (DS) has been developed that creates very realistic scenarios as a means of realizing these requirements. The DS consists of a simulator cabin, turntable (inside the dome), a 6-DOF hexapod system, shakers (vehicle vertical vibration actuators), and a motion system capable of moving 35 meters longitudinally and 20 meters laterally. The system is also capable of projecting images of actual city streets and highways onto a 360° spherical screen inside of the dome. As a result, the DS is able to reproduce a driving environment that is very similar to real driving.
Journal Article

Development of Innovative Toyota 10-Speed Longitudinal Automatic Transmission

2017-03-28
2017-01-1099
Toyota Motor Corporation has developed an innovative 10-speed longitudinal automatic transmission called the Direct Shift-10AT. The Direct Shift-10AT is a significant contributor to the excellent dynamic performance of the Lexus LC500. A wide gear spread with close gear ratios allows for rhythmical shifting, smooth and powerful acceleration from a standing start, along with quiet and relaxed high- speed driving due to low engine speeds. The lock-up area is expanded to a wider range of vehicle speeds (excluding low-speed regions such as when starting off), by the adoption of a multi-plate lock-up clutch, a newly developed torque converter, and a high-precision controller. As a result, the shift control can match the driver's intended operation more directly because the main cause of the response delay (transient changes in engine speed (flare)) is eliminated. Furthermore, fuel economy is improved due to the adoption of low friction clutches.
Technical Paper

Development of Lane Recognition Algorithm for Steering Assistance System

2005-04-11
2005-01-1606
This paper gives an outline of the steering assistance system (hereinafter, SAS) and a description of its key technology: the lane recognition algorithm. To accommodate a variety of driving styles, the SAS is equipped with a lane keeping assistance mode (LKA mode) and a lane departure warning mode (LDW mode) that can be selectively set by the driver. The former mode works in combination with adaptive cruise control (ACC) and carries the advantage of relieving the driving load that is placed on the driver. The latter mode has the benefit of reducing the danger of lane departure accidents caused by the driver dozing off and taking his eyes off the road. The newly developed lane recognition ECU has a simple hardware set-up of two 32-bit microcomputers. The lane recognition algorithm was constructed on the basis of a logic process that analyzes pattern edge points and selects a set of edge points that most closely resemble lanemarks.
Technical Paper

Development of Pre-Crash Safety System for Heavy Duty Trucks

2006-10-31
2006-01-3486
In fatal accidents due to heavy duty trucks, the fatalities of occupants in passenger cars in which rear-end collision occur account for the largest percent. Collisions to the vehicles in traffic jams and collision to other accidents scenes on express ways can result in serious repercussions. Therefore the system which reduces the damage of collisions has long been demanded and here the world-first Pre-crash Safety (PCS) System for heavy duty trucks was developed. This system gives warning to the driver in case there is a possibility of collision with preceding vehicles, and activates the brakes to mitigate damage in case there is a higher possibility of collision. In order to get the maximum effect on the express ways where the trucks are in high speed, it is necessary to give warning and activate the brakes with relatively early timing.
Technical Paper

Development of a New 6-Speed FWD Manual Transmission

2018-04-03
2018-01-0392
Environmental awareness has increased on a global scale which pushed for a heavier demand for weight reduction and high transmission efficiency on manual transmissions (hereafter referred to as the “MT”) in improving vehicle driving and fuel economy performance. Comfortable shift feel is also continuously in demand by the customer because its sensitive performance can be directly recognized by the driver which may determine the transmission’s merchantability. The newly developed 6-speed MT (hereafter referred to as the “6MT”) has achieved size reduction (compact size), weight reduced, better fuel efficiency, and improvement in the shift feel which will continue to maintain its’ competitiveness in the future.
Technical Paper

Development of a New Breath Alcohol Detector without Mouthpiece to Prevent Drunk Driving

2009-04-20
2009-01-0638
Breath alcohol interlock systems are used in Europe and the U.S. for drunk driving offenders, and a certain effect has been revealed in the prevention of drunk driving. Nevertheless, problems remain to be solved with commercialized detectors, i.e., a person taking the breath alcohol test must strongly expire to the alcohol detector through a mouthpiece for every test, more over the determination of the breath alcohol concentration requires more than 5 seconds. The goal of this research is to develop a device that functions suitable and unobtrusive enough as the interlock system. For this purpose, a new alcohol detector, which does not require a long and hard blowing to the detector through a mouthpiece, has been investigated. In this paper, as a tool available on board, a contact free alcohol detector for the prevention of drunk driving has been developed.
Technical Paper

Development of a New Pre-crash Safety System

2006-04-03
2006-01-1461
Systems already exist that reduce collision damage through collision-danger alarms and by operating such features as pre-tensioning seat belts and collision mitigation brakes when the system has determined the possibility of a collision by using millimeter-wave radar. Conversely, at present, carelessness in observing oncoming traffic accounts for a large percentage of head-on collisions. Timely collision warnings are effective in avoiding accidents and for mitigating the severity of the collision. However, warnings given too early even before the driver has had a chance to carry out normal evasive maneuvers, can annoy the driver. Accordingly, by adding a driver face direction sensor, the authors have developed in the present research a system that will only hasten the timing of warnings when the system has detected the direction of the driver's face and determined that they are not facing the front of the vehicle.
Technical Paper

Development of a Shift Control System for Automatic Transmissions Using Information from a Vehicle Navigation System

1999-03-01
1999-01-1095
We developed a new automatic transmission control system that performs shift control for the automatic transmission (A/T) using the road data obtained from the navigation system, which previously had been used only for route guidance, and installed it in a new car, Progrès. This system reads the distance to the approaching corner and its shape based on the vehicle's position data and the data of the approaching road obtained from the navigation system, and determines the optimum gear based on these data and the current vehicle speed to perform optimum shift control in linkage with the driver's driving operation. In this paper, configuration, features and effects of this new A/T control system that takes consideration of navigation data are described.
X