Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Method for Comparing Transient NOx Emissions With Weighted Steady State Test Results

1998-02-23
980408
This paper describes a method used to compare the emissions from transient operation of an engine with the emissions from steady state operating modes of the engine. Weightings were assigned to each mode based on the transient cycle under evaluation. The method of assigning the weightings for each mode took into account several factors, including the distance between each second of the transient cycle's speed-and-torque point requests (in a speed vs. torque coordinate system) and the given mode. Two transient cycles were chosen. The transient cycles were taken from actual in-use data collected on nonroad engines during in-field operation. The steady state modes selected were based on both International Standard Organization (ISO) test modes, as well as, augmentation based on contour plots of the emissions from nonroad diesel engines. Twenty-four (24) steady-state modes were used. The transient cycle's speed-and-torque points are used to weight each steady state mode in the method.
Technical Paper

A Quality Control Technique for Correlating Exhaust Gas Analysis Systems

1977-02-01
770138
A simple, inexpensive, critical flow blender has been developed for filling a tedlar bag with controllable concentrations of HC, NOx, CO2, and CO gases at levels encountered in automobile emissions testing. According to a daily schedule, a technician takes the bag to all analyzer sites in the laboratory for analysis. The concentrations indicated by each site are compared to the overall averages. The results are stored in a computerized data base from which control charts, statistical analyses, and interpretations of significant differences among test sites can be made. The precision, accuracy, and statistical interpretations of the data are discussed.
Technical Paper

Can Auto Technicians be Trained to Repair IM240 Emission Failures?

1996-02-01
960091
Eleven experienced commercial automotive technicians were recruited and trained to repair IM240 emission failures using a specially developed 30 hour course. The training course emphasized the use of an oscilloscope and a flow chart and wave form strategy to repair vehicles. Each technicians' performance was evaluated based on the repair of three or four in-use Arizona IM240 failures. Pre-training and post-training written tests were also administered. Results from this limited study were encouraging. After the technician training, HC and CO emission levels were reduced by 69% and NOx by 58%. More importantly, most of the technicians learned some new and useful diagnostic and equipment skills which they can immediately apply to their businesses. They also became more motivated to tackle the challenge of repairing vehicles to low transient emissions, and aware of the existence and use of new sophisticated diagnostic tools such as oscilloscopes.
Technical Paper

Catalysts for Methanol Vehicles

1987-11-01
872052
A Methanol catalyst test program has been conducted in two phases. The purpose of Phase I was to determine whether a base metal or lightly-loaded noble metal catalyst could reduce Methanol engine exhaust emissions with an efficiency comparable to conventional gasoline engine catalytic converters. The goal of Phase II was the reduction of aldehyde and unburned fuel emissions to very low levels by the use of noble metal catalysts with catalyst loadings higher than those in Phase I. Catalysts tested in Phase I were evaluated as three-way converters as well as under simulated oxidation catalyst conditions. Phase II catalysts were tested as three-way converters only. For Phase I, the most consistently efficient catalysts over the range of pollutants measured were platinum/rhodium configurations. None of the catalysts tested in Phase I were able to meet a NOx level of 1 gram per mile when operated in the oxidation mode.
Technical Paper

Effect of Single Wide Tires and Trailer Aerodynamics on Fuel Economy and NOx Emissions of Class 8 Line-Haul Tractor-Trailers

2005-11-01
2005-01-3551
We hypothesize that components designed to improve fuel economy by reducing power requirements should also result in a decrease in emissions of oxides of nitrogen (NOx). Fuel economy and NOx emissions of a pair of class 8 tractor-trailers were measured on a test track to evaluate the effects of single wide tires and trailer aerodynamic devices. Fuel economy was measured using a modified version of SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and correlated to fuel meter measurements. Tests were conducted using drive cycles simulating highway operations at 55 mph and 65 mph and suburban stop-and-go traffic. The tests showed a negative correlation (significant at p < 0.05) between fuel economy and NOx emissions. Single wide tires and trailer aerodynamic devices resulted in increased fuel economy and decreased NOx emissions relative to the baseline tests.
Technical Paper

Effects of Steady-State and Transient Operation on Exhaust Emissions from Nonroad and Highway Diesel Engines

1998-09-14
982044
Six heavy-duty diesel engines were tested for exhaust emissions on the ISO 8-mode nonroad steady-state duty cycle and the U.S. FTP highway transient test cycle. Two of these engines were baseline nonroad engines, two were Tier 1 nonroad engines, and two were highway engines. One of the Tier 1 nonroad engines and both of the highway engines were also tested on three transient cycles developed for nonroad engines. In addition, published data were collected from an additional twenty diesel engines that were tested on the 8-mode as well as at least one transient test cycle. Data showed that HC and PM emissions from diesel engines are very sensitive to transient operation while NOx emissions are much less so. Although one of the nonroad transient duty cycles showed lower PM than the steady-state duty cycles, all four of the other cycles showed much higher PM emissions than the steady-state cycle.
Technical Paper

Emission Patterns of Diesel-Powered Passenger Cars - Part II

1977-02-01
770168
An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo[a]pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussed in terms of emission trends due to either fuel type or driving cycle influence.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Investigation into the Vehicle Exhaust Emissions of High Percentage Ethanol Blends

1995-02-01
950777
Six in-use vehicles were tested on a baseline gasoline and nine gasoline/ethanol blends to determine the effect of ethanol content in fuels on automotive exhaust emissions and fuel economy. The baseline gasoline was representative of average summer gasoline and served as the base from which the other fuels were blended. For the majority of the vehicles, total hydrocarbon, and carbon monoxide exhaust emissions as well as fuel economy decreased while NOx and acetaldehyde exhaust emissions increased as the ethanol content in the test fuel increased. Formaldehyde and carbon dioxide emissions were relatively unaffected by the addition of ethanol. The emission responses to the increased fuel oxygen levels were consistent with what would be expected from leaning-out the air/fuel ratio for a spark ignition engine. The results are shown graphically and a linear regression is performed utilizing the method of least squares to investigate statistically significant trends in the data.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
X