Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

A Hybrid Economy Bleed, Electric Drive Adaptive Power and Thermal Management System for More Electric Aircraft

2010-11-02
2010-01-1786
Minimizing energy use on more electric aircraft (MEA) requires examining in detail the important decision of whether and when to use engine bleed air, ram air, electric, hydraulic, or other sources of power. Further, due to the large variance in mission segments, it is unlikely that a single energy source is the most efficient over an entire mission. Thus, hybrid combinations of sources must be considered. An important system in an advanced MEA is the adaptive power and thermal management system (APTMS), which is designed to provide main engine start, auxiliary and emergency power, and vehicle thermal management including environmental cooling. Additionally, peak and regenerative power management capabilities can be achieved with appropriate control. The APTMS is intended to be adaptive, adjusting its operation in order to serve its function in the most efficient and least costly way to the aircraft as a whole.
Technical Paper

An Overview of Electrically Powered Control Actuation Health Management

2010-11-02
2010-01-1746
As More Electric Aircraft design becomes the preferred system concept for several aerospace platforms, the electro-mechanical actuator (EMA) is emerging as a solution of choice for the primary flight control actuation system. This paper will give a brief history of electric actuation for flight systems, diagnosis and prognosis demonstrations and current state of health management research. AFRL and NASA working with industry and academic partners have been developing health management technologies that will help prevent the occurrence of some inherent EMA failure modes. Advanced fault diagnostics and failure prognostics were applied to the critical failure modes identified in the Failure Mode, Effects, and Criticality Analysis (FMECA). Modeling and simulation of EMA with degraded components were developed to support the design and evaluation of physics-based algorithms. Test data were generated using EMA hardware to validate high-fidelity EMA and physics-of-failure models.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Technical Paper

Developing IVHM Requirements for Aerospace Systems

2013-09-17
2013-01-2333
The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a “real-world” example related to designing a landing gear system.
Technical Paper

Development and Performance of a Reduced Order Dynamic Aircraft Model

2015-09-15
2015-01-2415
A reduced order dynamic aircraft model has been created for the purpose of enabling constructive simulation studies involving integrated thermal management subsystems. Such studies are motivated by the increasing impact of on-board power and thermal subsystems to the overall performance and mission effectiveness of modern aircraft. Previous higher-order models that have been used for this purpose have the drawbacks of much higher development time, along with much higher execution times in the simulation studies. The new formulation allows for climbs, accelerations and turns without incurring computationally expensive stability considerations; a dynamic inversion control law provides tracking of user-specified mission data. To assess the trade-off of improved run-time performance against model capability, the reduced order formulation is compared to a traditional six degree-of-freedom model of the same air vehicle.
Technical Paper

Enhancements to Software Tools and Progress in Model-Based Design of EOA on the INVENT Program

2014-09-16
2014-01-2118
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems across multiple disciplines. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several MBD-derived software tools, including models of EOA technologies, have been developed. To validate these models and demonstrate the performance of EOA technologies, a series of Integrated Ground Demonstration (IGD) hardware tests are planned. Several of the numerous EOA software tools and MBD-based processes have been updated and adapted to support this activity.
Technical Paper

Impact of Heat Exchanger Location on Engine Performance

2012-10-22
2012-01-2168
Recent turbine engine numerical modeling developments have significantly improved the capability to accomplish integrated system-level analyses of aircraft thermal, power, propulsion, and vehicle systems. Combining desired aircraft performance with thermal management challenges of modern aircraft, which include increased heat loads from components such as avionics and more-electric accessories, as well as maintaining engine components at specified operating temperatures, demands we look for solutions that maximize heat sink capacity while minimizing adverse impacts on engine and aircraft performance. Development of optimized aircraft thermal management architectures requires the capability to directly analyze the impact of thermal management components, such as heat exchangers, on engine performance. This paper presents a process to evaluate the impact of heat exchanger design and performance characteristics (e.g., volume and pressure drops) on engine performance.
Technical Paper

Laboratory Testing and Field Demonstration of an Environmentally Benign and Reduced Corrosion Runway Deicing Fluid

2011-06-13
2011-38-0085
Currently the U. S. Department of Defense (DoD) exclusively uses potassium acetate (KAc)-based runway deicing fluids (RDFs) to deice and anti-ice military runways and taxiways. Commercial airports predominantly use KAc, but some also use RDFs composed of KAc plus propylene glycol (PG) or urea plus PG. Conventional RDFs have environmental concerns due to toxicity as well as material compatibility problems such as corrosion of aircraft carbon brake-pad components, cadmium-plated landing gear, and airfield lighting fixtures. Under the Strategic Environmental Research and Development Program (SERDP), Battelle tested a series of patented - bio-based RDFs to address these issues. Tests showed that the Battelle RDFs met the mandatory Aerospace Material Specification (AMS) 1435 requirements. These new RDFs have reduced ecotoxicity compared to currently used RDFs and are compliant with all other environmental requirements.
Technical Paper

Large Displacement Stability by Design for Robust Aircraft Electric Power Systems

2012-10-22
2012-01-2197
More electric aircraft (MEA) architectures have increased in complexity leading to a demand for evaluating the dynamic stability of their advanced electrical power systems (EPS). The system interactions found therein are amplified due to the increasingly integrated subsystems and on-demand power requirements of the EPS. Specifically, dynamic electrical loads with high peak-to-average power ratings as well as regenerative power capabilities have created a major challenge in design, control, and integration of the EPS and its components. Therefore, there exists a need to develop a theoretical framework that is feasible and useful for the specification and analysis of the stability of complex, multi-source, multi-load, reconfigurable EPS applicable to modern architectures. This paper will review linear and nonlinear system stability analysis approaches applicable to a scalable representative EPS architecture with a focus on system stability evaluation during large-displacement events.
Technical Paper

Potential Technology to Unclog Hot Day Operational Limit

2010-11-02
2010-01-1788
Fuel has been a popular choice for thermal system designers to use for absorbing aircraft accessory heat load due to its consumable nature. However, the shortcoming of using fuel as a heat sink is the dependency of environmental conditions. This deficiency has plagued the current United States Air Force fleet operation especially performing ground hold and low altitude attack mission during hot days. A Northrop Grumman led industrial team, commissioned by AFRL Power directorate through the INVENT program, has vigorously explored potential technologies to assist air force to enhance the mission capability. The results show various promising technologies not only can extend the hot day operational limit but also can potentially have an unrestricted capability. This paper describes the results from the study performed by Northrop Grumman for an advanced unmanned air vehicle (AUAV) for potential technologies and discusses the modeling approach in support of the analytical process.
Technical Paper

Refrigerant Charge Management and Control for Next-Generation Aircraft Vapor Compression Systems

2013-09-17
2013-01-2241
Vapor compression systems (VCS) offer significant benefits as the backbone for next generation aircraft thermal management systems (TMS). For a comparable lift, VCS offer higher system efficiencies, improved load temperature control, and lower transport losses than conventional air cycle systems. However, broad proliferation of VCS for many aircraft applications has been limited primarily due to maintenance and reliability concerns. In an attempt to address these and other VCS system control issues, the Air Force Research Laboratory has established a Vapor Cycle System Research Facility (VCSRF) to explore the practical application of dynamic VCS control methods for next-generation, military aircraft TMS. The total refrigerant mass contained within the closed refrigeration system (refrigerant charge) is a critical parameter to VCS operational readiness. Too much or too little refrigerant can be detrimental to system performance.
Journal Article

Software Tools for Efficient Model-Based Design of Energy Optimized Aircraft

2012-10-22
2012-01-2176
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several software tools have been developed and are in use that aid in the efficient MBD of next-generation EOA. Among these are subsystem model libraries, automated subsystem model verification test scripts, a distributed co-simulation application, and tools for system configuration, EOA mission building, data logging, plotting, post-processing, and visualization, and energy flow analysis. Herein, each of these tools is described. A detailed discussion of each tool's functionality and its benefits with respect to the goal of achieving successful integrated system simulations in support of MBD of EOA is given.
Journal Article

Standardized Electrical Power Quality Analysis in Accordance with MIL-STD-704

2010-11-02
2010-01-1755
MIL-STD-704 defines power quality in terms of transient, steady-state, and frequency-domain metrics that are applicable throughout a military aircraft electric power system. Maintaining power quality in more electric aircraft power systems has become more challenging in recent years due to the increase in load dynamics and power levels in addition to stricter requirements of power system characteristics during a variety of operating conditions. Further, power quality is often difficult to assess directly during experiments and aircraft operation or during data post-processing for the integrated electric power system (including sources, distribution, and loads). While MIL-STD-704 provides guidelines for compliance testing of electric load equipment, it does not provide any instruction on how to assess the power quality of power sources or the integrated power system itself, except the fact that power quality must be satisfied throughout all considered operating conditions.
Journal Article

The Utility of Wide-Bandwidth Emulation to Evaluate Aircraft Power System Performance

2016-09-20
2016-01-1982
The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
X