Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Fuel Economy Evaluation of a Safety Compliant Single Passenger Vehicle

1992-09-01
921664
The Nexus vehicle was designed and built for Transport Canada at the University of Saskatchewan to demonstrate that a safety compliant single passenger commuter vehicle could attain extremely low fuel consumption rates at modest highway speeds. Experimentally determined steady state fuel consumption rates of the Nexus prototype ranged from 1.6 L/100 km at 61 km/hr up to 2.8 L/100 km at 121 km/hr. Fuel consumption rates for the Society of Automotive Engineers (SAE) driving cycle tests were 4.5 L/100 km for the SAE Urban cycle and 2.0 L/100 km for the SAE Interstate 55 cycle. The efficiency of the power train was determined using a laboratory dynamometer, enabling the road test results to be compared to the results from an energy and performance simulation program. Predicted fuel economy was in good agreement with that determined experimentally. Widespread use of single passenger commuter vehicles would substantially reduce current transportation energy consumption.
Technical Paper

Active Control of Wind Noise Using Robust Feedback Control

1997-05-20
971891
A feedback controller bas been developed using robust control techniques to control the sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain loop shaping techniques. System uncertainty, sound pressure level reductions, and actuator constraints are included in the design process. For the wind noise problem, weighting factors have been included to distinguish between the importance of modes that radiate sound and those that do not radiate. The wind noise controller has been implemented in the quiet wind tunnel facility at the Ray W. Herrick Laboratories at Purdue University. A multiple-input, multiple-output controller using accelerometer feedback and shaker control was able to achieve control up to 1000 Hz. Sound pressure level reductions of as much as 15 dB were achieved at the frequencies of the plates modes. Overall reductions over the 100-1000 Hz band were approximately 5 dB.
Technical Paper

Aerodynamic Drag Reduction of Intercity Buses

1980-11-01
801404
An experimental program was conducted to verify the reduction in fuel consumption achievable with aerodynamic improvements to intercity buses. Wind tunnel model tests were used to develop effective aerodynamic improvements and full-scale road tests to validate the results. Greyhound Lines coach models MC-7 and MC-8 were tested with head- and crosswinds. Aerodynamic drag of the MC-7 was reduced 17 percent at zero yaw. Drag of the MC-8 initially was higher; it was reduced 27 percent at zero yaw by the best fairing. Both low-drag configurations were less sensitive to crosswinds than the original models; significant drag reduction was maintained to 15 degrees yaw angle. Fuel consumption measurements made with aerodynamic fairings installed on an MC-7 showed that the low-drag bus used 11.7 percent less fuel at a steady 55 mph. The cost of the full-scale modifications was estimated at $ 1,500 each for a retrofit kit and no added cost to produce on new vehicles.
Technical Paper

Automotive Suspension Models Using Component Mobility Methodology

1993-05-01
931298
The mobility modeling technique is applied to the structure-borne noise path through a vehicle suspension. The model is developed using measured FRF data taken on the isolated components of the suspension and body structure of a midsize sedan. Several important modeling issues of suspensions are resolved. It was determined that multiple degrees of freedom are required to model the coupling at joints between the suspension and body structure. The investigation also demonstrated that bushings should not be included in the measurements used to develop these models and should be added later using simplified bushing parameters. The importance of transfer mobility information between the various suspension attachments was also investigated. The agreement between the mobility model predictions and the measured FRF data for the overall system is better than similar data published in the literature to date.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Technical Paper

Control of Interior Pressure Fluctuations Due to Flow Over Vehicle Openings

1999-05-17
1999-01-1813
Grazing flows over open windows or sunroofs may result in “flow buffeting,” i.e. self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the vehicle. The associated pressure fluctuations may cause passenger fatigue and discomfort. Many solutions have been proposed to solve this problem, including for example leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are “passive” i.e. they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In this study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel.
Technical Paper

Hybrid Electric Vehicle Powertrain Controller Development Using Hardware in the Loop Simulation

2013-04-08
2013-01-0156
It is a time and cost consuming way to physically develop Hybrid Electric Vehicle (HEV) supervisor controller due to the increasing complexity of powertrain system. This study aims to investigate the HEV supervisor controller development process using dSPACE midsize Hardware in the Loop simulation system (HIL) for HEV powertrain control. The prototyping controller was developed on basis of MircoAutoBox II, and an HIL test bench was built on midsize HIL machine for the purpose of verification. The feasibility and capability of HIL were attested by the prototyping control strategy and fault modes simulation. The proposed approach was demonstrated its effectiveness and applicability to HEV supervisor controller development.
Technical Paper

Laboratory Method for Evaluating the Sound Transmission Characteristics of Primary Bulb Body Seals

1996-02-01
960193
A laboratory method was developed to evaluate the sound transmission characteristics of road vehicle body seals. Primary bulb seal samples were mounted in a fixture which approximated the geometry of a typical door-gap cavity. The seal fixture was integrated with a rigid panel into the floor of a quiet, low-speed, closed test-section wind tunnel. Flow-excited pressure fluctuations in the door-gap cavity were induced by the air stream instead of by sound waves in a quiescent environment as in standard transmission loss measurements. A soundproof anechoic enclosure located underneath the test-section floor isolated the sound receiver. The sound level reduction between the cavity pressure and the sound pressure into the enclosure, a quantity directly related to the sound transmission loss (TL) in this case, was measured accurately between the 1250 and 5000 Hz one-third octave bands.
Journal Article

Longitudinal Slip Ratio Control of Electric Powertrains Using a Controller Output Observer for Disturbance Rejection

2014-04-01
2014-01-0125
The use of electric motors to independently control the torque of two or four wheels of a vehicle has the potential to significantly improve safety and handling. One virtue of electric motors is that their output torque can be accurately estimated. Using this known output torque, longitudinal tire force and coefficient of friction can be estimated via a controller output observer. This observer works by constructing a model of wheel dynamics, with longitudinal tire force as an unknown input quantity. A known wheel torque is input to the physical and modeled system and the resulting measured and predicted wheel speeds are compared. The error between the measured and predicted wheel speed is driven towards zero by a robust feedback controller. This controller modulates an estimate of longitudinal tire force used as an input by the wheel dynamics model. The resulting estimate of longitudinal tire force quickly converges towards the actual value with minimal computational expense.
Technical Paper

Measurement of the Statistical Variation of Structural-Acoustic Characteristics of Automotive Vehicles

1993-05-01
931272
Two structure-borne and two airborne paths were measured on 99 “identical” Isuzu RODEOs and 57 “identical” Isuzu pickup trucks. Significant effort was made to control measurement variability but not environmental (climate) variations. A record was kept of the tests of a reference vehicle over the variation of environmental factors. The frequency response functions (FRFs) of the reference vehicle varied by approximately 2-4 dB over the frequency range 0-500 Hz for the structure-borne paths and over 0-1000 Hz for the airborne paths due to measurement and environmental variations. The FRFs of the fleet varied by as much as 5-10 dB over the same frequency range. In this paper, the vehicle tests are described. The reference and the fleet data are shown in raw form. Reduced data and implications of the results are also discussed.
Journal Article

New Slip Control System Considering Actuator Dynamics

2015-04-14
2015-01-0656
A new control strategy for wheel slip control, considering the complete dynamics of the electro-hydraulic brake (EHB) system, is developed and experimentally validated in Cranfield University's HiL system. The control system is based on closed loop shaping Youla-parameterization method. The plant model is linearized about the nominal operating point, a Youla parameter is defined for all stabilizing feedback controller and control performance is achieved by employing closed loop shaping technique. The stability and performance of the controller are investigated in frequency and time domain, and verified by experiments using real EHB smart actuator fitted into the HiL system with driver in the loop.
Technical Paper

Pressure Fluctuations in a Flow-Excited Door Gap Cavity Model

1997-05-20
971923
The flow-induced pressure fluctuations in a door gap cavity model were investigated experimentally using a quiet wind tunnel facility. The cavity cross-section dimensions were typical of road vehicle door cavities, but the span was only 25 cm. One cavity wall included a primary bulb rubber seal. A microphone array was used to measure the cavity pressure field over a range of flow velocities and cavity configurations. It was found that the primary excitation mechanism was an “edge tone” phenomenon. Cavity resonance caused amplification around discrete frequencies, but did not cause the flow disturbances to lock-on. Possible fluid-elastic coupling related to the presence of a compliant wall was not significant. A linear spectral decomposition method was then used to characterize the cavity pressure in the frequency domain, as the product of a source spectral distribution function and an acoustic frequency response function.
Technical Paper

Promoting More Effective Communication of Maintenance Issues Between Pilots and Maintenance Technicians

2000-05-09
2000-01-1705
The lack of effective and efficient communication between pilots and maintenance technicians has been recognized as a problem in general aviation by both members of the industry and academia. The goal of this paper is to provide an accounting of the impact that communication between maintenance technicians and pilots, or the lack thereof, can have upon both the bottom line and the experience of those who operate within the general aviation arena. The researchers interviewed and observed maintenance technicians and pilots in general aviation operations to identify what members on both sides of the communication process identified as being problematic and troubling. Several of the major barriers to communication, as well as several strategies to overcome those barriers, are discussed.
Technical Paper

Slip Resistance Predictions for Various Metal Step Materials, Shoe Soles and Contaminant Conditions

1987-11-01
872288
The relationship of slip resistance (or coefficient of friction) to safe climbing system maneuvers on high profile vehicles has become an issue because of its possible connection to falls of drivers. To partially address this issue, coefficients of friction were measured for seven of the more popular fabricated metal step materials. Evaluated on these steps were four types of shoe materials (crepe, leather, ribbed-rubber, and oil-resistant-rubber) and three types of contaminant conditions (dry, wet-water, and diesel fuel). The final factor evaluated was the direction of sole force application. Results showed that COF varied primarily as a function of sole material and the presence of contaminants. Unexpectedly, few effects were attributible to the metal step materials. Numerous statistical interactions suggested that adequate levels of COF are more likely to be attained by targeting control on shoe soles and contaminants rather than the choice of a particular step material.
Technical Paper

Sound Transmission Through Primary Bulb Rubber Sealing Systems

1997-05-20
971903
Structural sound transmission through primary bulb (PB) sealing systems was investigated. A two-degrees-of-freedom analytical model was developed to predict the sound transmission characteristics of a PB seal assembly. Detailed sound transmission measurements were made for two different random excitations: acoustic and aerodynamic. A reverberation room method was first used, whereby a seal sample installed within a test fixture was excited by a diffuse sound field. A quiet flow facility was then used to create aerodynamic pressure fluctuations which acted as the excitation. The space-averaged input pressure within the pseudo door gap cavity and the sound pressure transmitted on the quiescent side of the seal were obtained in each case for different cavity dimensions, seal compression, and seal designs. The sound transmission predictions obtained from the lumped element model were found to be in reasonable agreement with measured values.
Technical Paper

The Design and Operation of a Turbocharger Test Facility Designed for Transient Simulation

1997-02-24
970344
The turbocharger, consisting of a radial or axial flow turbine and an radial flow compressor presents perhaps one of the most challenging tasks to the turbomachinery designer. Due to the necessity of speed changes in the diesel engine, the turbocharger transits a wide variety of operating points in its normal operation. During an engine speed acceleration or deceleration there will be a lag in the required air delivery to the engine, resulting in increased smoke emission and limiting the power delivered by the engine. In order to investigate the dynamic performance of a turbocharged engine, an essential first step must be the development of an adequate model for transient characteristics of the turbocharger. One of the significant problems that must be overcome for the modeling effort to be successful is a detailed experimental description of the transient performance of the device.
Technical Paper

What is Adequate Resolution in the Numerical Computations of Transient Jets?

1997-02-24
970051
It is generally agreed that adequate resolution is required to reproduce the structure of spray and gas jets in numerical computations. It has not been clarified what this resolution should be although it would appear reasonable to assume that it should be such that the physical scales of the problem are resolved. In the case of a jet, this implies that near the orifice, the jet diameter has to be resolved since this is the appropriate length scale. It is shown in this work that if such a resolution is not used in computing transient jets, the structure of the jet is not reproduced with adequate accuracy. In fact, unexpected, erroneous and misleading dependence on ambient turbulence length and time scales will be predicted when the initial ambient turbulence diffusivity is small relative to the jet diffusivity. When the ambient turbulence diffusivity is of the same order as the jet diffusivity or greater, entrainment rates are significantly underpredicted.
X