Refine Your Search

Topic

Search Results

Technical Paper

A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load

2010-04-12
2010-01-1263
The objective of this investigation is to optimize a light-duty diesel engine in order to minimize soot, NOx, carbon monoxide (CO), unburned hydrocarbon (UHC) emissions and peak pressure rise rate (PPRR) while improving fuel economy in a low oxygen environment. Variables considered are the injection timings, fractional amount of fuel per injection, half included spray angle, swirl, and stepped-bowl piston geometry. The KIVA-CHEMKIN code, a multi-dimensional computational fluid dynamics (CFD) program with detailed chemistry is used and is coupled to a multi-objective genetic algorithm (MOGA) along with an automated grid generator. The stepped-piston bowl allows more options for spray targeting and improved charge preparation. Results show that optimal combinations of the above variables exist to simultaneously reduce emissions and fuel consumption. Details of the spray targeting were found to have a major impact on the combustion process.
Technical Paper

A Search for a Low Nitric Oxide Engine

1974-02-01
741172
Various homogeneous charge and stratified charge engine configurations were studied at wide-open throttle conditions, using simplified computer models. An order-of-magnitude parametric study was performed to find those combinations of variables which predicted a low nitric oxide level. Extreme values of variables were studied for a homogeneous charge engine configuration, which could be difficult to do in a real engine. As expected, these calculations indicated that for practical engine operation the equivalence ratio of the mixture must either be very rich or very lean for a resultant low nitric oxide level. Two extremes of stratified charge engine operation were investigated analytically, in other words, immediate mixing of newly formed products of rich combustion with excess air (instantaneous mixing) and a period of rich combustion followed by air addition to the rich products (delayed mixing). Comparisons of power, efficiency, and specific NOx are presented.
Journal Article

A Surrogate Fuel Formulation Approach for Real Transportation Fuels with Application to Multi-Dimensional Engine Simulations

2014-04-01
2014-01-1464
Real transportation fuels, such as gasoline and diesel, are mixtures of thousands of different hydrocarbons. For multidimensional engine applications, numerical simulations of combustion of real fuels with all of the hydrocarbon species included exceeds present computational capabilities. Consequently, surrogate fuel models are normally utilized. A good surrogate fuel model should approximate the essential physical and chemical properties of the real fuel. In this work, we present a novel methodology for the formulation of surrogate fuel models based on local optimization and sensitivity analysis technologies. Within the proposed approach, several important fuel properties are considered. Under the physical properties, we focus on volatility, density, lower heating value (LHV), and viscosity, while the chemical properties relate to the chemical composition, hydrogen to carbon (H/C) ratio, and ignition behavior. An error tolerance is assigned to each property for convergence checking.
Technical Paper

Air Velocity Measurements in Engines by Vortex Shedding

1974-02-01
741057
This paper describes a new application of Karman vortex shedding frequency as a velocity sensor in a motored internal combustion engine cylinder. The probe design, experimental setup and data reduction procedures are described. The quality of data obtained depends strongly on the relative frequency distribution of the free-stream turbulence and of the vortex shedding induced by the vortex generator. The instrument was evaluated on a CFR engine equipped with a shrouded intake valve. The results are presented in terms of the airswirl ratio at several selected crank angle degrees versus engine speed. The limitations of the device were also demonstrated in L-head engine tests.
Technical Paper

An Experimental Study of the Delayed Mixing Stratified Charge Engine Concept

1977-02-01
770042
Preliminary computer studies indicated that the delayed mixing stratified charge engine concept might produce low emissions of nitrogen oxide and still provide reasonable efficiency and power. In the delayed mixing stratified charge engine concept a fuel-rich region is burned followed by air being mixed into the rich products. Nitrogen oxide formation was initially limited in the rich product mixtures because of the lack of oxygen and after mixing by the relatively low temperatures due to charge expansion. A single cylinder engine was used to simulate the delayed mixing stratified charge combustion process. A rich charge was drawn into the engine through the carburetor. Combustion was initiated with a spark; later air was injected to complete the combustion process. The results showed that emissions could be controlled by the delayed mixing combustion process. The engine specific power was also at reasonable levels. However, the engine efficiency was low.
Technical Paper

An In Situ Determination of the Thermal Properties of Gombustion-Chamber Deposits

1982-02-01
820071
A technique for making a radiometric measurement of the deposit surface temperature in a methane-fired engine was developed. The wavelength region between 3.5 and 4.1 μm was investigated. It was determined that while the combustion gases were relatively transparent, the surface temperature measurements would contain some gas radiation. A method of averaging the measurements of many cycles and correcting these data for the gas radiation was developed. Time-averaged surface temperature was used in a steady-state heat transfer analysis to determine deposit thermal conductivity. Deposit thermal diffusivity was determined from a transient experiment in which the engine’s ignition system was turned off and the cooling response of the deposit and wall were measured.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Journal Article

Clean Diesel Combustion by Means of the HCPC Concept

2010-04-12
2010-01-1256
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fuelled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and gradually admitting it into the cylinder during the combustion process.
Journal Article

Combustion Model for Biodiesel-Fueled Engine Simulations using Realistic Chemistry and Physical Properties

2011-04-12
2011-01-0831
Biodiesel-fueled engine simulations were performed using the KIVA3v-Release 2 code coupled with Chemkin-II for detailed chemistry. The model incorporates a reduced mechanism that was created from a methyl decanoate/methyl-9-decenoate mechanism developed at the Lawrence Livermore National Laboratory. A combination of Directed Relation Graph, chemical lumping, and limited reaction rate tuning was used to reduce the detailed mechanism from 3299 species and 10806 reactions to 77 species and 209 reactions. The mechanism was validated against its detailed counterpart and predicted accurate ignition delay times over a range of relevant operating conditions. The mechanism was then combined with the ERC PRF mechanism to include n-heptane as an additional fuel component. The biodiesel mechanism was applied in KIVA using a discrete multi-component model with accurate physical properties for the five common components of real biodiesel fuel.
Journal Article

Comparison of Measurement Strategies for Light Absorbing Aerosols from Modern Diesel Engines

2014-04-01
2014-01-1570
Light absorbing components of aerosols, often called black carbon (BC), are emitted from combustion sources and are believed to play a considerable role in direct atmospheric radiative forcing by a number of climate scientists. In addition, it has been shown that BC is associated with adverse health effects in a number of epidemiological studies. Although the optical properties (both absorbing and scattering) of combustion aerosols are needed in order to accurately assess the impact of emissions on radiative forcing, many models use radiative properties of diesel particulate matter that were determined over two decades ago. In response to concerns of the human health impacts of particulate matter (PM), regulatory bodies around the world have significantly tightened PM emission limits for diesel engines. These requirements have resulted in considerable changes in engine technology requiring updated BC measurements from modern engines equipped with aftertreatment systems.
Journal Article

Comparison of Particulate Size Distributions from Advanced and Conventional Combustion - Part I: CDC, HCCI, and RCCI

2014-04-01
2014-01-1296
Comparison of particulate size distribution measurements from different combustion strategies was conducted with a four-stroke single-cylinder diesel engine. Measurements were performed at four different load-speed points with matched combustion phasing. Particle size distributions were measured using a scanning mobility particle sizer (SMPS). To study the influence of volatile particles, measurements were performed with and without a volatile particle remover (thermodenuder) at low and high dilution ratios. The use of a single testing platform enables quantitative comparison between combustion strategies since background sources of particulate are held constant. A large number of volatile particles were present under low dilution ratio sample conditions for most of the operating conditions. To avoid the impact of volatile particles, comparisons were made based on the high dilution ratio measurements with the thermodenuder.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Technical Paper

Computational Investigation of Low Load Operation in a Light-Duty Gasoline Direct Injection Compression Ignition [GDICI] Engine Using Single-Injection Strategy

2014-04-01
2014-01-1297
The use of gasoline in a compression ignition engine has been a research focus lately due to the ability of gasoline to provide more premixing, resulting in controlled emissions of the nitrogen oxides [NOx] and particulate matter. The present study assesses the reactivity of 93 RON [87AKI] gasoline in a GM 1.9L 4-cylinder diesel engine, to extend the low load limit. A single injection strategy was used in available experiments where the injection timing was varied from −42 to −9 deg ATDC, with a step-size of 3 deg. The minimum fueling level was defined in the experiments such that the coefficient of variance [COV] of indicated mean effective pressure [IMEP] was less than 3%. The study revealed that injection at −27 deg ATDC allowed a minimum load of 2 bar BMEP. Also, advancement in the start of injection [SOI] timing in the experiments caused an earlier CA50, which became retarded with further advancement in SOI timing.
Journal Article

Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion

2013-04-08
2013-01-1678
The focus of the present study was to characterize the fuel reactivity of high octane number fuels (i.e., low fuel reactivity), namely gasoline, ethanol, and methanol when mixed with cetane improvers under lean, premixed combustion conditions. Two commercially available cetane improvers, 2-ethylhexyl nitrate and di-tert-butyl peroxide, were used in the study. First, blends of the primary reference fuels iso-octane and n-heptane were port injected under fixed operating conditions. The resulting combustion phasings were used to generate effective PRF number maps. Then, blends of the aforementioned base fuels and cetane improvers were tested under the same lean premixed conditions as the PRF blends. Based on the combustion phasing results of the base fuel and cetane improver mixture, the effective PRF number, or octane number, could be determined.
Journal Article

Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel

2013-04-08
2013-01-0264
A single-cylinder light-duty diesel engine was used to investigate dual fuel reactivity controlled compression ignition (RCCI) operated with two different fuel combinations: gasoline/diesel fuel and methanol/diesel fuel. The engine was operated over a range of conditions, from 1500 to 2300 rpm and 3.5 to 17 bar gross IMEP. Using the stock re-entrant piston bowl geometry, both fuel combinations were able to achieve low NOx and PM emissions with a peak gross indicated efficiency of 48%. However, at light load conditions both gasoline and methanol yielded poorer combustion efficiencies. Previous studies have shown that the high-levels of piston induced mixing that are created by the stock piston are not required, and in fact are detrimental due to increased heat transfer losses, for premixed combustion. Thus a modified piston featuring a shallow, flat piston bowl with nearly no squish land was also investigated.
Journal Article

Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine

2015-04-14
2015-01-0952
The effect of fuel physical properties on the ignition and combustion characteristics of diesel fuels was investigated in a heavy-duty 2.52 L single-cylinder engine. Two binary component fuels, one comprised of farnesane (FAR) and 2,2,4,4,6,8,8-heptamethylnonane (HMN), and another comprised of primary reference fuels (PRF) for the octane rating scale (i.e. n-heptane and 2,2,4-trimethylpentane), were blended to match the cetane number (CN) of a 45 CN diesel fuel. The binary mixtures were used neat, and blended at 25, 50, and 75% by volume with the baseline diesel. Ignition delay (ID) for each blend was measured under identical operating conditions. A single injection was used, with injection timing varied from −12.5 to 2.5 CAD. Injection pressures of 50, 100, and 150 MPa were tested. Observed IDs were consistent with previous work done under similar conditions with diesel fuels. The shortest IDs were seen at injection timings of −7.5 CAD.
Technical Paper

Effects of Temporal and Spatial Distributions of Ignition and Combustion on Thermal Efficiency and Combustion Noise in DICI Engine

2014-04-01
2014-01-1248
The effects of the temporal and spatial distributions of ignition timings of combustion zones on combustion noise in a Direct Injection Compression Ignition (DICI) engine were studied using experimental tests and numerical simulations. The experiments were performed with different fuel injection strategies on a heavy-duty diesel engine. Cylinder pressure was measured with the sampling intervals of 0.1°CA in order to resolve noise components. The simulations were performed using the KIVA-3V code with detailed chemistry to analyze the in-cylinder ignition and combustion processes. The experimental results show that optimal sequential ignition and spatial distribution of combustion zones can be realized by adopting a two-stage injection strategy in which the proportion of the pilot injection fuel and the timings of the injections can be used to control the combustion process, thus resulting in simultaneously higher thermal efficiency and lower noise emissions.
Technical Paper

Estimating Instantaneous Losses Within a Firing IC Engine Using Synthetic Variables

2011-04-12
2011-01-0611
A new method for instantaneous friction estimation in firing internal combustion engines has been developed in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin - Madison. This Synthetic Variable approach, which has previously been used for combustion quality diagnostics, focuses on carefully measuring instantaneous engine speed and other easily measurable engine variables and combining them with dynamic models of other engine processes. This approach numerically strips away the dynamic effects that mask friction effects on engine speed and reveals friction estimates with clarity. This information could be useful for engine designers and developers to assist in accurately understanding the sources of instantaneous friction within the running engine. The friction results from these studies have been very encouraging.
Technical Paper

Experimental and Computational Assessment of Inlet Swirl Effects on a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2014-04-01
2014-01-1299
The light-medium load operating regime (4-8 bar net IMEP) presents many challenges for advanced low temperature combustion strategies (e.g. HCCI, PPC) in light-duty, high speed engines. In this operating regime, lean global equivalence ratios (Φ<0.4) present challenges with respect to autoignition of gasoline-like fuels. Considering this intake temperature sensitivity, the objective of this work was to investigate, both experimentally and computationally, gasoline compression ignition (GCI) combustion operating sensitivity to inlet swirl ratio (Rs) variations when using a single fuel (87-octane gasoline) in a 0.475-liter single-cylinder engine based on a production GM 1.9-liter high speed diesel engine. For the first part of this investigation, an experimental matrix was developed to determine how changing inlet swirl affected GCI operation at various fixed load and engine speed operating conditions (4 and 8 bar net IMEP; 1300 and 2000 RPM).
Technical Paper

Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure

2014-04-01
2014-01-1302
Previous work has demonstrated the capabilities of gasoline compression ignition to achieve engine loads as high as 19.5 bar BMEP with a production multi-cylinder diesel engine using gasoline with an anti-knock index (AKI) of 87. In the current study, the low load limit of the engine was investigated using the same engine hardware configurations and 87 AKI fuel that was used to achieve 19.5 bar BMEP. Single injection, “minimum fueling” style injection timing and injection pressure sweeps (where fuel injection quantity was reduced at each engine operating condition until the coefficient of variance of indicated mean effective pressure rose to 3%) found that the 87 AKI test fuel could run under stable combustion conditions down to a load of 1.5 bar BMEP at an injection timing of −30 degrees after top dead center (°aTDC) with reduced injection pressure, but still without the use of intake air heating or uncooled EGR.
X