Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

An Artificial Neural Network Model to Predict Tread Pattern-Related Tire Noise

2017-06-05
2017-01-1904
Tire-pavement interaction noise (TPIN) is a dominant source for passenger cars and trucks above 40 km/h and 70 km/h, respectively. TPIN is mainly generated from the interaction between the tire and the pavement. In this paper, twenty-two passenger car radial (PCR) tires of the same size (16 in. radius) but with different tread patterns were tested on a non-porous asphalt pavement. For each tire, the noise data were collected using an on-board sound intensity (OBSI) system at five speeds in the range from 45 to 65 mph (from 72 to 105 km/h). The OBSI system used an optical sensor to record a once-per-revolution signal to monitor the vehicle speed. This signal was also used to perform order tracking analysis to break down the total tire noise into two components: tread pattern-related noise and non-tread pattern-related noise.
Journal Article

Analytical Modelling of Diesel Powertrain Fuel System and Consumption Rate

2015-01-01
2014-01-9103
Vehicle analytical models are often favorable due to describing the physical phenomena associated with vehicle operation following from the principles of physics, with explainable mathematical trends and with extendable modeling to other types of vehicle. However, no experimentally validated analytical model has been developed as yet of diesel engine fuel consumption rate. The present paper demonstrates and validates for trucks and light commercial vehicles an analytical model of supercharged diesel engine fuel consumption rate. The study points out with 99.6% coefficient of determination that the average percentage of deviation of the steady speed-based simulated results from the corresponding field data is 3.7% for all Freeway cycles. The paper also shows with 98% coefficient of determination that the average percentage of deviation of the acceleration-based simulated results from the corresponding field data under negative acceleration is 0.12 %.
Technical Paper

Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

2016-04-05
2016-01-0124
Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
Technical Paper

Assessment of Heavy Vehicle EDR Technologies

2013-09-24
2013-01-2402
Heavy-vehicle event data recorders (HVEDRs) provide a source of temporal vehicle data just prior to, during, and for a short period after, an event. In the 1990s, heavy-vehicle (HV) engine manufacturers expanded the capabilities of engine control units (ECU) and engine control modules (ECM) to include the ability to record and store small amounts of parametric vehicle data. This advanced capability has had a significant impact on vehicle safety by helping law enforcement, engineers, and researchers reconstruct events of a vehicle crash and understand the details surrounding that vehicle crash. Today, EDR technologies have been incorporated into a wide range of heavy vehicle (HV) safety systems (e.g., crash mitigation systems, air bag control systems, and behavioral monitoring systems). However, the adoption of EDR technologies has not been uniform across all classes of HVs or their associated vehicle systems.
Technical Paper

Avoiding the Pitfalls in Motorsports Data Acquisition

2008-12-02
2008-01-2987
Restrictions on track testing, combined with advances in technology, have contributed to an increased dependence on sensors and data acquisition for diagnosing problems and improving performance in motorsports vehicles. This dependence has created a new set of challenges for race engineers to collect quality data from a vehicle at the track. Successful 7- or 8-post shaker rig testing is highly dependent on the quality of the data acquired at the track. An improperly configured data acquisition system can actually be worse than a faulty sensor. This paper highlights a few of the most common problems in motorsports data acquisition: aliasing and sample rate selection. The effects of these problems are described for typical suspension sensors such as accelerometers, shock potentiometers, load cells, and laser ride height sensors. An experimental case study is presented to explain the implications of these problems.
Technical Paper

Commercial Vehicle Comfort under Human Vibration Perspective

2011-10-04
2011-36-0269
This paper discusses the importance of vibration transmitted from the ground to the driver from the perspective of human whole-body vibration (WBV). The scope of analysis is to compare the main vehicle frequencies with those important from the human vibration health and comfort point of view. That was performed by mapping the vibration transmissibility present in different sub sections of the vehicle. The first is the transmissibility between the axles and the chassis rail, the following between the chassis rail and the cabin. The last would be between the cabin and the drivers' seat, although that was not possible from the acquisition point of view. The vehicles measured have mechanical suspension and elastomeric cabin coupling. It is known that all suspension systems in vehicle are highly nonlinear, although here linear dynamic analysis methods were used.
Technical Paper

Effects of Commercial Truck Configuration on Roll Stability in Roundabouts

2015-09-29
2015-01-2741
This paper presents the results of a study on the effect of truck configurations on the roll stability of commercial trucks in roundabouts that are commonly used in urban settings with increasing frequency. The special geometric layout of roundabouts can increase the risk of rollover in high-CG vehicles, even at low speeds. Relatively few in-depth studies have been conducted on rollover stability of commercial trucks in roundabouts. This study uses a commercially available software, TruckSim®, to perform simulations on four truck configurations, including a single-unit truck, a WB-67 semi-truck, the combination of a tractor with double 28-ft trailers, and the combination of a tractor with double 40-ft trailers. A single-lane and multilane roundabout are modeled, both with a truck apron. Three travel movements through the roundabouts are considered, including right turn, through-movement, and left turn.
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Technical Paper

Hybrid Combustion Model for Engine Analysis in Real Time

2015-09-22
2015-36-0213
The analysis of engine’s performance, gas emissions and combustion parameters is critical in the development of internal combustion engines. The combustion parameters analysis provide important information to speed up real-time engine’s operation in order to shorter the process of engine’s map calibration. The real-time analysis of these parameters allows the detection of anomalies, such as the prediction of knocking event. From the measurement of the In-cylinder pressure curve and the use of a one-zone combustion model is possible to evaluate the heat release rate, mass burned fraction and average In-cylinder gas temperature. Aiming to expand the amount of real-time data available, such as unburned and burned gases temperature and volume, radius and velocity of turbulent spherical flame and turbulence factor, this paper presents a hybrid combustion model, being composed by coupling a two-zone model to a one-zone model.
Technical Paper

Interconnected Roll Stability Control System for Semitrucks with Double Trailers

2023-04-11
2023-01-0906
This paper provides a simulation analysis of a novel interconnected roll stability control (RSC) system for improving the roll stability of semitrucks with double trailers. Different from conventional RSC systems where each trailer’s RSC module operates independently, the studied interconnected RSC system allows the two trailers’ RSC systems to communicate with each other. As such, if one trailer’s RSC activates, the other one is also activated to assist in further scrubbing speed or intervening sooner. Simulations are performed using a multi-body vehicle dynamics model that is developed in TruckSim® and coupled with the RSC model established in Simulink®. The dynamic model is validated using track test data. The simulation results for a ramp steer maneuver (RSM) and sine-with-dwell (SWD) maneuver indicate that the proposed RSC system reduces lateral acceleration and rollover index for both trailers, decreasing the likelihood of wheel tip-up and vehicle rollover.
Technical Paper

Longitudinal Performance of a BAJA SAE Vehicle

2010-10-06
2010-36-0315
Driven by the necessity to reduce costs and improve products quality the automotive industry replaced the design method known as "trial and error" by those grounded on mathematical and physical theory. In this context, a longitudinal performance test was made by BAJA SAE UFMG team, in order to acquire vehicular performance data that will be used to validate computer models. The methodology consists of sensors and data acquisition system research, validation, fixation and installation in the vehicle, test and process of acquired data. From these steps, correlated data were acquired from magnitudes such as angular velocity in transmission shafts, global longitudinal acceleration and velocity, travel of break and throttle pedals and pressure inside of master cylinder. These results developed the knowledge about vehicular dynamic allowing the improvement of futures prototypes.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Technical Paper

Performance Measurement of Vehicle Antilock Braking Systems (ABS)

2015-04-14
2015-01-0591
Outdoor objective evaluations form an important part of both tire and vehicle design process since they validate the design parameters through actual tests and can provide insight into the functional performances associated with the vehicle. Even with the industry focused towards developing simulation models, their need cannot be completely eliminated as they form the basis for approving the performance predictions of any newly developed model. An objective test was conducted to measure the ABS performance as part of validation of a tire simulation design tool. A sample vehicle and a set of tires were used to perform the tests- on a road with known profile. These specific vehicle and tire sets were selected due to the availability of the vehicle parameters, tire parameters and the ABS control logic. A test matrix was generated based on the validation requirements.
Technical Paper

Real Time Bearing Defect Classification Using Time Domain Analysis and Deep Learning Algorithms

2023-04-11
2023-01-0096
Structural Health Monitoring (SHM), especially in the field of rotary machinery diagnosis, plays a crucial role in determining the defect category as well as its intensity in a machine element. This paper proposes a new framework for real-time classification of structural defects in a roller bearing test rig using time domain-based classification algorithms. Along with the bearing defects, the effect of eccentric shaft loading has also been analyzed. The entire system comprises of three modules: sensor module – using accelerometers for data collection, data processing module – using time-domain based signal processing algorithms for feature extraction, and classification module – comprising of deep learning algorithms for classifying between different structural defects occurring within the inner and outer race of the bearing.
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
X