Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Case Study for Life Cycle Assessment (LCA) as an Energy Decision Making Tool: The Production of Fuel Ethanol from Various Feedstocks

1998-11-30
982205
Life Cycle Analysis (LCA) considers the key environmental impacts for the entire life cycle of alternative products or processes in order to select the best alternative. An ideal LCA would be an expensive and time consuming process because any product or process typically involves many interacting systems and a considerable amount of data must be analysed for each system. Practical LCA methods approximate the results of an ideal analysis by setting limited analysis boundaries and by accepting some uncertainty in the data values for the systems considered. However, there is no consensus in the LCA field on the correct method of selecting boundaries or on the treatment of data set uncertainty. This paper demonstrates a new method of selecting system boundaries for LCA studies and presents a brief discussion on applying Monte Carlo Analysis to treat the uncertainty questions in LCA.
Technical Paper

Design and Development of the 2003 University of Alberta Hybrid Electric Vehicle

2003-03-03
2003-01-1268
The 2003 University of Alberta FutureTruck team is converting a 2002 Ford Explorer to be a pre-transmission, parallel Hybrid Electric Vehicle (HEV). The goals for the FutureTruck competition are to achieve increased fuel economy, while reducing emissions and maintaining the functionality of the stock SUV. The University of Alberta design places a 2.0L Zetec engine, running on E85, in parallel with a Unique Mobility brushless DC motor. In the Explorer the engine and motor will have peak power outputs of 110 kW and 60 kW. The motor will draw electricity from a nominal 200V lithium ion battery pack that is in parallel with ultracapacitor banks. Further modifications integrate this drive train into the vehicle and use control logic to provide a seamless, customer friendly package.
Technical Paper

Effect of Biodiesel Fuel Properties and Its Blends on Atomization

2006-04-03
2006-01-0893
Biodiesels are promising alternatives to diesel fuel since they are biodegradable, non-toxic and reduce air pollution. This study presents analytical comparisons of atomization characteristics of 3 types of biodiesels and 6 blends with Diesel No. 2. Results showed that the smallest and largest drop sizes were associated with coconut and peanut biodiesel blends, respectively. Using unblended biodiesels increases drop size by 40%, which indicates either custom nozzles should be used in such applications or blending is required to reduce surface tension and viscosity to enhance atomization. Knowledge of atomization of pure biodiesel and its blends as alternative fuels in diesel engines can lead to better design of diesel engine injectors to meet regulatory emission guidelines and engine performance.
Technical Paper

Effect of Reformer Gas on HCCI Combustion - Part I:High Octane Fuels

2007-04-16
2007-01-0208
Homogeneous Charge Compression Ignition (HCCI) engines offer high fuel efficiency and some emissions benefits. However, it is difficult to control and stabilize combustion over a sufficient operating range because the critical compression ratio and intake temperature at which HCCI combustion can be achieved varies with operating conditions such as speed and load as well as with fuel octane number. Replacing part of the base fuel with reformer gas, (which can be produced from the base hydrocarbon fuel), alters HCCI combustion characteristics in varying ways depending on the replacement fraction and the base fuel auto-ignition characteristics. Injecting a blend of reformer gas and base fuel offers a potential HCCI combustion control mechanism because fuel injection quantities and ratios can be altered on a cycle-by-cycle basis.
Technical Paper

Effect of Reformer Gas on HCCI Combustion - Part II: Low Octane Fuels

2007-04-16
2007-01-0206
Homogeneous Charge Compression Ignition (HCCI) combustion offers high fuel efficiency and some emissions benefits. However, it is difficult to control and stabilize combustion over a significant operating range because the critical compression ratio and intake temperature at which HCCI combustion can be achieved vary with operating conditions such as speed and load as well as with fuel octane number. Replacing part of the base fuel with reformer gas, (which can be produced from the base hydrocarbon fuel), alters HCCI combustion characteristics in varying ways depending on the replacement fraction and the base fuel auto-ignition characteristics. Because fuel injection quantities and ratios can be altered on a cycle-by-cycle basis during operation, injecting a variable blend of reformer gas and base fuel offers a potential HCCI combustion control mechanism.
Technical Paper

Emissions Effects of Alternative Fuels in Light-Duty and Heavy-Duty Vehicles

2000-03-06
2000-01-0692
Energy supply and environmental concerns have led to interest in alternative transportation fuels and power-trains. Already, there are significant changes in mainstream gasoline and Diesel formulation to accommodate tighter emissions standards. Some alternative fuels are being promoted as “cleaner” replacements for gasoline and Diesel fuel. There are many research papers which present data on these different alternative fuels, yet it is difficult to compare the fuels with any confidence. The majority of published studies do not use consistent methodology and make many assumptions (which may or may not be reported). Based on an extensive literature review, this study presents emissions results drawn from a smaller number of papers which provide alternative fuel and conventional emissions data in a comparable manner. Both light-duty and heavy-duty vehicles are considered.
Technical Paper

Experimental Measurement of On-Road CO2 Emission and Fuel Consumption Functions

2007-04-16
2007-01-1610
Motorized transport has become an essential part of our world economic system with an ever-increasing number of vehicles on the road. However, considering the depletion of energy resources and the aggravation of greenhouse gas issues, it is critical to improve vehicle fuel consumption. These demands are moving us toward advanced engine and powertrain technologies. However, understanding our progress also requires improvements in the way we measure and certify vehicle emissions and fuel economy performance. This paper describes the use of an on-board fuel consumption and emissions measurement system to develop on-road fuel consumption functions that can be used to quantify the fuel economy impact of vehicle, road and traffic control changes. The system uses an ECM OBD-II scanner, a Mass Air Flow meter and an emissions analyzer to monitor fuel consumption and exhaust CO2 emission rates (in g/s) as well as vehicle speed and other parameters.
Technical Paper

Experimental and Modelling Study of Variable Cycle Time for a Reversing Flow Catalytic Converter for Natural Gas/Diesel Dual Fuel Engines

2000-03-06
2000-01-0213
This paper presents an investigation of a reverse flow catalytic converter attached to a diesel/natural gas dual fuel engine. Experimental data were obtained in a ceramic monolith catalytic converter with a palladium based catalyst. A variety of flow reversal cycle times were explored experimentally when the engine load was changed from a high load to a low load. A single channel numerical model was developed for the data set and the effect of reverse flow cycle time was studied using both physical and numerical model systems. The duration of the cycle time is shown to be an important parameter in the operation of the converter. Shorter cycle times produced the least fluctuation in reactor temperature and gave the highest time-averaged conversion. Intermediate cycle times gave the most rapid increase in the maximum reactor temperature.
Technical Paper

Extending the Load Range of a Natural Gas HCCI Engine using Direct Injected Pilot Charge and External EGR

2009-06-15
2009-01-1884
Natural gas is a challenging fuel for HCCI engines because its single-stage ignition and rapid combustion make it difficult to optimize combustion timing over a significant load range. This study investigates direct injection of a pilot quantity of high-cetane fuel near TDC as a range extension and combustion control mechanism for natural gas HCCI engines. The EGR and load range is studied in a supercharged natural gas HCCI engine equipped with external EGR, intake heating and a direct injection system for n-heptane pilot fuel. The operating range and emissions are of primary interest and are compared between both the baseline HCCI engine with variable intake temperature and the direct injected HCCI (DI-HCCI) engine with constant intake temperature. Test results show the EGR and load range at fixed intake temperature can be extended using pilot direct injection.
Technical Paper

Life Cycle Value Assessment (LCVA) Comparison of Conventional Gasoline and Reformulated Gasoline

1998-02-23
980468
Fuel choices are being made today by consumers, industry and government. One such choice is whether to use reformulated gasoline to replace regular unleaded gasoline. A second choice involves the source of crude oil, with synthetic crude oil from tar sands currently expanding its share of the Canadian supply. Decision makers usually work with the direct economic consequences of their fuel choice. However, they generally lack the knowledge to measure environmental aspects of different fuel systems. This paper uses Life Cycle Value Assessment (LCVA) to demonstrate how the life cycle environmental aspects can be compared for alternative fuel choices. LCVA is an engineering decision making tool which provides a framework for the decision maker to consider the key economic and environmental impacts for the entire life cycle of alternative products or process systems.
Technical Paper

Life Cycle Value Assessment (LCVA) for Alternative Transportation Fuel Decisions

1997-04-08
971169
Transportation, with its high energy consumption, is commonly recognized as a major contributor to local, regional, and global environmental impacts. With around 95% of transportation energy originating from petroleum and an increasing emphasis on the associated environmental impacts, alternative transportation fuels are receiving great attention from industry, government, researchers, and the public. When the motivation for developing alternative fuels is to reduce environmental impact, a rigorous tool is needed for comparing the effects of very different alternative and conventional fuels. Such an evaluation tool must consider not only the effects of fuel combustion, but also the effects of producing, refining/processing, distributing, and disposing of wastes associated with that fuel… in other words, the life cycle effects of the fuel.
Technical Paper

Multi-Variable Sensitivity Analysis and Ranking of Control Factors Impact in a Stoichiometric Micro-Pilot Natural Gas Engine at Medium Loads

2022-03-29
2022-01-0463
A diesel piloted natural gas engine's performance varies depending on operating conditions and has performed best under medium to high loads. It can often equal or better the fuel conversion efficiency of a diesel-only engine in this operating range. This paper presents a study performed on a multi-cylinder Cummins ISB 6.7L diesel engine converted to run stoichiometric natural gas/diesel micro-pilot combustion with a maximum diesel contribution of 10%. This study systematically quantifies and ranks the sensitivity of control factors on combustion and performance while operating at medium loads. The effects of combustion control parameters, including the pilot start of injection, pilot injection pressure, pilot injection quantity, exhaust gas recirculation, and global equivalence ratio, were tested using a design of experiments orthogonal matrix approach.
Journal Article

Oxygenated Fuel Considerations for In-Shop Fuel System Leak Testing Hazards

2008-04-14
2008-01-0554
Because of domestic production from renewable sources and their clean burning nature, alcohols, especially ethanol, have seen growing use as a blending agent and replacement for basic hydrocarbons in gasoline. The increasing use of alcohol in fuels raises questions on the safety of these fuels under certain non-operational situations. Modern vehicles use evaporative emission control systems to minimize environmental emissions of fuel. These systems must be relatively leak-free to function properly and are self-diagnosed by the vehicle On-Board Diagnostic system. When service is required, the service leak testing procedures may involve forcing test gases into the “evap” system and also exposure of the fuel vapors normally contained in the system to atmosphere. Previous work has discussed the hazards involved when performing shop leak testing activities for vehicles fuelled with conventional hydrocarbon gasoline [1, 2].
Technical Paper

Performance and Emissions of a Converted RABA 2356 Bus Engine in Diesel and Dual Fuel Diesel/Natural Gas Operation

1993-08-01
931823
Diesel engined buses are the major means of transportation in many urban and suburban areas. Compared with other transportation systems, bus fleets are flexible, effective and low in capital cost. However, existing buses contribute to a serious air pollution problem in many cities. They also consume large amounts of diesel fuel, which is a concern for national economies where locally available natural gas could displace the more expensive petroleum-based fuel. New engine designs significantly reduce pollutants and some use alternative fuels. However, there is a huge infrastructure of existing diesel buses. Expensive new buses or bus engines will only gradually displace them, particularly in countries with weaker economies. The urgently required fuel replacement and pollution reduction benefits must be deferred into the future. These factors lead to the requirement for an economically viable, clean-burning conversion system to convert existing diesel engines to natural gas fuel.
Technical Paper

Reformer Gas Composition Effect on HCCI Combustion of n-Heptane, iso-Octane, and Natural Gas

2008-04-14
2008-01-0049
Although HCCI engines promise low NOx emissions with high efficiency, they suffer from a narrow operating range between knock and misfire because they lack a direct means of controlling combustion timing. A series of previous studies showed that reformer gas, (RG, defined as a mixture of light gases dominated by hydrogen and carbon monoxide), can be used to control combustion timing without changing mixture dilution, (λ or EGR) which control engine load. The effect of RG blending on combustion timing was found to be mainly related to the difference in auto-ignition characteristics between the RG and base fuel. The practical effectiveness of RG depends on local production using a fuel processor that consumes the same base fuel as the engine and efficiently produces high-hydrogen RG as a blending additive.
Technical Paper

Sub-Zero Cold Starting of a Port-Injected M100 Engine Using Plasma Jet Ignition and Prompt EGR

1993-03-01
930331
This study describes the design and proof-of-concept testing of a system which has enabled sub-zero cold starting of a port-injected V6 engine fuelled with M100. At -30°C, the engine could reach running speed about 5s after the beginning of cranking. At a given temperature, starts were achieved using a fraction of the mixture enrichment normally required for the more volatile M85 fuels. During cold start cranking, firing is achieved using a high energy plasma jet ignition system. The achievement of stable idling following first fire is made possible through the use of an Exhaust Charged Cycle (ECC) camshaft design. The ECC camshaft promptly recirculates hot exhaust products, unburnt methanol and partial combustion products back into the cylinder to enhance combustion. The combined plasma jet/ECC system demonstrated exceptionally good combustion stability during fast idle following sub-zero cold starts.
Technical Paper

Symmetric Negative Valve Overlap Effects on Energy Distribution of a Single Cylinder HCCI Engine

2018-04-03
2018-01-1250
The effects of Variable Valve Timing (VVT) on Homogeneous Charge Compression Ignition (HCCI) engine energy distribution and waste heat recovery are investigated using a fully flexible Electromagnetic Variable Valve Timing (EVVT) system. The experiment is carried out in a single cylinder, 657 cc, port fuel injection engine fueled with n-heptane. Exergy analysis is performed to understand the relative contribution of different loss mechanisms in HCCI engines and how VVT changes these contributions. It is found that HCCI engine brake thermal efficiency, the Combined Heat and Power (CHP) power to heat ratio, the first and the second law efficiencies are improved with proper valve timing. Further analysis is performed by applying the first and second law of thermodynamics to compare HCCI energy and exergy distribution to Spark Ignition (SI) combustion using Primary Reference Fuel (PRF). HCCI demonstrates higher fuel efficiency and power to heat and energy loss ratios compared to SI.
Technical Paper

Tailpipe Emissions Comparison Between Propane and Natural Gas Forklifts

2000-06-19
2000-01-1865
It is commonly stated that natural gas-fueled forklifts produce less emissions than propane-fueled forklifts. However, there is relatively little proof. This paper reports on a detailed comparative study at one plant in Edmonton, Canada where a fleet of forklift trucks is used for indoor material movement. (For convenience, the acronym NGV, ie. Natural Gas Vehicle is used to designate natural gas-fueled and LPG, ie. Liquified Petroleum Gas, is used to designate propane-fueled forklifts). Until recently the forklift trucks (of various ages) were LPG carburetted units with two-way catalytic converters. Prompted partially by worker health concerns, the forklifts were converted to fuel injected, closed-loop controlled NGV systems with three-way catalytic converters. The NGV-converted forklifts reduced emissions by 77% (NOX) and 76% (CO) when compared to just-tuned LPG forklifts.
Technical Paper

The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion

1995-10-01
952409
The different roles played by small and large eddies in engine combustion were studied. Experiments compared natural gas combustion in a converted, single cylinder Volvo TD 102 engine and in a 125 mm cubical cell. Turbulence is used to enhance flame growth, ideally giving better efficiency and reduced cyclic variation. Both engine and test cell results showed that flame growth rate correlated best with the level of high frequency, small eddy turbulence. The more effective, small eddy turbulence also tended to lower cyclic variations. Large scales and bulk flows convected the flame relative to cool surfaces and were most important to the initial flame kernel.
Technical Paper

Uncertainty, Sensitivity and Data Quality Assessment for Life Cycle Value Assessment (LCVA)

1998-02-23
980479
Life Cycle Value Assessment (LCVA) is a decision making tool which considers environmental, economic and/or social aspects for the entire life cycle of a product or process from “cradle-to-grave”. LCVA can be used for a wide range of public policy and business decisions with the analysis being performed at various levels of rigour. By its nature, LCVA utilizes data sets of varying qualities drawn from a wide range of sources. The uncertainties in the input data obviously lead to uncertainties in the results of the LCVA analysis. To establish confidence in an LCVA's recommendations, it is important to consider these uncertainties and incorporate an assessment of uncertainty into the LCVA process. However, the diverse nature of the data sets being used makes it difficult to rigorously establish data uncertainty levels. In addition, the complexity of most life cycle models makes it difficult to trace uncertainty through the analysis process.
X