Refine Your Search

Topic

Author

Search Results

Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Technical Paper

A Neural Network for Fault Recognition

1993-03-01
930861
In both the marine and power industries there are now a choice of off-the-shelf condition monitoring systems available that utilise artificial intelligence techniques to analyse engine performance data. These systems are proving to be a valuable aid in optimising performance and reducing down-time by assisting with maintenance planning. These systems rely on careful monitoring of an engine's performance, for instance engine speed, fuelling, boost pressure, turbine inlet pressure, turbocharger speed, and exhaust temperature. With this data, they utilise a variety of interpolation and pattern recognition algorithms to compare it with previously recorded data stored in lookup tables. This paper describes how a neural network approach can be used as a cheap alternative for the analysis of this data, greatly reducing the need for such large lookup tables and complex pattern recognition programs.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Technical Paper

Computational and Experimental Investigation of Airflow Through a Vehicle Intercooler Duct

1993-04-01
931097
The last decade has seen a rapid increase within industry of the use of computational fluid dynamics (CFD) to assist in the design and development phase of product manufacture. There have recently evolved many new commercial CFD codes, both general and problem specific, but little validation data is available with which the engineer may assess the code's ability to simulate accurately a given flow problem. Much doubt prevails about current methods of turbulence modelling yet without comparison with experimental data few firm conclusions may be drawn. The work described in this paper is an investigation into the highly turbulent air flow through a vehicle intercooler duct. The general purpose CFD code STAR CD was used to obtain a computational prediction of the flow field. These results were correlated with experimental values of velocity and turbulence levels obtained using a single component laser Doppler anemometry system.
Technical Paper

Control-Oriented Modelling of a Wankel Rotary Engine: A Synthesis Approach of State Space and Neural Networks

2020-04-14
2020-01-0253
The use of Wankel rotary engines as a range extender has been recognised as an appealing method to enhance the performance of Hybrid Electric Vehicles (HEV). They are effective alternatives to conventional reciprocating piston engines due to their considerable merits such as lightness, compactness, and higher power-to-weight ratio. However, further improvements on Wankel engines in terms of fuel economy and emissions are still needed. The objective of this work is to investigate the engine modelling methodology that is particularly suitable for the theoretical studies on Wankel engine dynamics and new control development. In this paper, control-oriented models are developed for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) principles and the artificial Neural Networks (NN), the Wankel engine models are derived by leveraging both first-principle knowledge and engine test data.
Technical Paper

Design of a Feedback Controlled Thermostat for a Vehicle Cooling System

1996-08-01
961823
In traditional liquid cooled internal combustion engine systems, the coolant temperature is controlled by a thermostat which governs the coolant flow rate to the radiator. The thermostat is effectively a directional control valve in which the spool displacement is used to direct flow to the radiator. The coolant temperature is primarily a function of four parameters, namely radiator and thermostat characteristics, coolant flow rate and ambient temperature. By employing closed-loop feedback, the coolant temperature can be controlled according to environmental conditions. To achieve this goal the overall system must be correctly designed. That is the issue discussed in this paper. The increasing use of simulation for both circuit and component analysis in the automtive industry has come about due to the requirement for acceptable transient as well as steady state system performance.
Technical Paper

Development and Optimisation of an Adaptive Safety Monitor

2018-04-03
2018-01-0867
Fuel economy and emission challenges are pushing automotive OEMs to develop alternative hybrid-electric, and full-electric powertrains. This increases variation in potential powertrain architectures, exacerbating the already complex control software used to coordinate various propulsion devices within the vehicle. Safety of this control software must be ensured through high-integrity software monitoring functions that detect faults and ensure safe mitigating action is taken. With the complexity of the control software, this monitoring functionality has itself become complex, requiring extensive modification for each new powertrain architecture. Significant effort is required to develop, calibrate, and verify to ensure safety (as defined by ISO 26262). But this must also be robust against false fault-detection, thereby maximising vehicle availability to the customer.
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
Technical Paper

Elucidation of Aircraft Energy Use Through Time-Variant Exergy Analysis

2011-10-18
2011-01-2683
Increases in fuel costs and environmental concerns have in recent years heightened the importance of fuel efficiency as a design consideration in vehicles, especially aircraft. For this reason, a greater understanding of the energy consumption of vehicles is needed, both for design and operational decisions. Exergy, a measure of available work in an imbalance of state, allows systems to be compared on an equal basis with losses and waste being equated to fuel costs. Vehicles and especially aircraft do not operate in steady state as do industrial plants, the traditional subject of exergy analysis. While some analysis of aircraft has been performed in the literature, time-variance has not been addressed, leading to a lack of detail and only very broad conclusions. It is proposed that in order to fully understand aircraft energy use, a fully time-variant analysis must be performed.
Journal Article

Experimental Characterisation of Heat Transfer in Exhaust Pipe Sections

2008-04-14
2008-01-0391
This paper describes the characterisation of heat transfer in a series of 11 test sections designed to represent a range of configurations seen in production exhaust systems, which is part of a larger activity aimed at the accurate modeling of heat transfer and subsequent catalyst light off in production exhaust systems comprised of similar geometries. These sections include variations in wall thickness, diameter, bend angle and radius. For each section a range of transient and steady state tests were performed on a dynamic test cell using a port injected gasoline engine. In each case a correlation between observed Reynolds number (Re) and Nusselt number (Nu) was developed. A model of the system was implemented in Matlab/Simulink in which each pipe element was split into 25 sub-elements by dividing the pipe into five both axially and radially. The modeling approach was validated using the experimental data.
Technical Paper

Explore and Extend the Effectiveness of Turbo-compounding in a 2.0 litres Gasoline Engine

2015-04-14
2015-01-1279
After years of study and improvement, turbochargers in passenger cars now generally have very high efficiency. This is advantageous, but on the other hand, due to their high efficiency, only a small portion of the exhaust energy is needed for compressing the intake air, which means further utilization of waste heat is restricted. From this point of view, a turbo-compounding arrangement has significant advantage over a turbocharger in converting exhaust energy as it is immune to the upper power demand limit of the compressor. However, with the power turbine being located in series with the main turbine, power losses are incurred due to the higher back pressure which increases the pumping losses. This paper evaluates the effectiveness that the turbo-compounding arrangement has on a 2.0 litres gasoline engine and seeks to draw a conclusion on whether the produced power is sufficient to offset the increased pumping work.
Journal Article

Further Investigations into the Benefits and Challenges of Eliminating Port Overlap in Wankel Rotary Engines

2021-04-06
2021-01-0638
In a previous study it was shown that a production vehicle employing a Wankel rotary engine, the Mazda RX-8, was easily capable of meeting much more modern hydrocarbon emissions than it had been certified for. It was contended that this was mainly due to its provision of zero port overlap through its adoption of side intake and exhaust ports. In that earlier work a preliminary investigation was conducted to gauge the impact of adopting a zero overlap approach in a peripherally-ported Wankel engine, with a significant reduction in performance and fuel economy being found. The present work builds on those initial studies by taking the engine from the vehicle and testing it on an engine dynamometer. The results show that the best fuel consumption of the engine is entirely in line with that of several proposed dedicated range extender engines, supporting the contention that the Wankel engine is an excellent candidate for that role.
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
Journal Article

Initial Investigations into the Benefits and Challenges of Eliminating Port Overlap in Wankel Rotary Engines

2020-04-14
2020-01-0280
The Wankel rotary engine historically found limited success in automotive applications due in part to poor combustion efficiency and challenges around emissions. This is despite its significant advantages in terms of power density, compactness, vibrationless operation, and reduced parts count in relation to the 4-stroke reciprocating engine, which is now-dominant in the automotive market. A large part of the reason for the poor fuel economy and high hydrocarbon emissions of the Wankel engine is that there is a very significant amount of overlap when the ports are opened and/or closed by the rotor apices (so-called peripheral ports). This paper investigates the benefits of zero overlap from a production engine with this characteristic and the effect of configuring a peripherally-ported Wankel engine in such a manner.
Technical Paper

Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

2019-09-09
2019-24-0184
Reducing emissions from light duty vehicles is critical to meet current and future air quality targets. With more focus on real world emissions from light-duty vehicles, the interactions between engine and exhaust gas aftertreatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel air-fuel ratio). In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented.
Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Technical Paper

Is the “K Value” of an Engine Truly Fuel Independent?

2020-04-14
2020-01-0615
The octane appetite of an engine is frequently characterised by the so-called K value. It is usually assumed that K is dependent only on the thermodynamic conditions in the engine when knock occurs. In this work we test this hypothesis: further analysis was conducted on experimental results from SAE 2019-01-0035 in which a matrix of fuels was tested in a single cylinder engine. The fuels consisted of a relatively small number of components, thereby simplifying the analysis of the chemical kinetic proprieties. Through dividing the original fuel matrix into subsets, it was possible to explore the variation of K value with fuel properties. It was found that K value tends to increase slightly with RON. The explanation for this finding is that higher RON leads to advanced ignition timing (i.e. closer to MBT conditions) and advanced ignition timing results in faster combustion because of the higher pressures and temperatures reached in the thermodynamic trajectory.
X