Refine Your Search

Topic

Search Results

Technical Paper

A Machine Learning Modeling Approach for High Pressure Direct Injection Dual Fuel Compressed Natural Gas Engines

2020-09-15
2020-01-2017
The emissions and efficiency of modern internal combustion engines need to be improved to reduce their environmental impact. Many strategies to address this (e.g., alternative fuels, exhaust gas aftertreatment, novel injection systems, etc.) require engine calibrations to be modified, involving extensive experimental data collection. A new approach to modeling and data collection is proposed to expedite the development of these new technologies and to reduce their upfront cost. This work evaluates a Gaussian Process Regression, Artificial Neural Network and Bayesian Optimization based strategy for the efficient development of machine learning models, intended for engine optimization and calibration. The objective of this method is to minimize the size of the required experimental data set and reduce the associated data collection cost for engine modeling.
Technical Paper

An Experimental and Numerical Study of Combustion Chamber Design for Lean-Burn Natural Gas Engines

1996-08-01
961672
In this paper a study of the squish-generated charge motion in the combustion chamber of a natural gas engine is reported. A combination of both numerical simulations and actual engine tests was used to correlate the turbulence level at the spark plug location with performance and cylinder pressure data for three different chamber configurations. The higher-turbulence combustion chamber showed an average 1.5% reduction in brake specific fuel consumption in comparison with the lower turbulence level combustion chambers. The emission levels from the high-turbulence case were, however, generally higher than those from the lower-turbulence combustion chambers.
Technical Paper

Application of Fuel Momentum Measurement Device for Direct Injection Natural Gas Engines

2015-04-14
2015-01-0915
In direct-injection engines, combustion and emission formation is strongly affected by injection quality. Injection quality is related to mass-flow rate shape, momentum rate shape, stability of pulses as well as mechanical and hydraulic delays associated with fuel injection. Finding these injector characteristics aids the interpretation of engine experiments and design of new injection strategies. The goal of this study is to investigate the rate of momentum for the single and post injections for high-pressure direct-injection natural gas injectors. The momentum measurement method has been used before to study momentum rate of injection for single and split injections for diesel sprays. In this paper, a method of momentum measurement for gas injections is developed in order to present transient momentum rate shape during injection timing. In this method, a gas jet impinges perpendicularly on a pressure transducer surface.
Technical Paper

Application of an In-Cylinder Local Infrared Absorption Fuel Concentration Sensor in a Diesel-Ignited Dual-Fuel Engine

2016-10-17
2016-01-2310
As global energy demands continue to be met with ever evolving and stricter emissions requirements, natural gas (NG) has become a highly researched alternative to conventional fossil fuels in many industrial sectors. Transportation is one such field that can utilize the benefits of NG as a primary fuel for use in internal combustion engines (ICEs). In the context of heavy-duty on-highway transportation applications, diesel-ignited dual-fuel (DIDF) combustion of NG has been identified as a commercially viable alternative technology. Previous investigations of DIDF have examined the various trends present across the spectrum of DIDF operating space. However, in-cylinder processes are still not well understood and this investigation aims to further understanding in this area. An in-cylinder, local infrared absorption fuel concentration sensor is used to examine in-cylinder processes by comparison with previous optical and thermodynamic studies.
Technical Paper

Autoignition and Emission Characteristics of Gaseous Fuel Direct Injection Compression Ignition Combustion

2007-04-16
2007-01-0131
An experimental investigation of the autoignition and emission characteristics of transient turbulent gaseous fuel jets in heated and compressed air was conducted in a shock tube facility. Experiments were performed at an initial pressure of 30 bar with initial oxidizer temperatures ranging from 1200 to 1400 K, injection pressures ranging from 60 to 150 bar, and injection durations ranging from 1.0 to 2.5 ms. Methane and 90.0% methane/10.0% ethane blend were used as fuel. Under the operating conditions studied, increasing temperature resulted in a significant decrease in autoignition delay time. Increasing the injection pressure decreased ignition delay as well. The downstream location of the ignition kernel relative to the jet penetration distance was found to be in the range, 0.4
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Technical Paper

Combustion Measurement and Simulation With Natural Gas Fuelling of a Single-Cylinder Spark-Ignition Engine

1989-11-01
891314
Combustion of natural gas in a spark-ignition engine has been studied experimentally in a single-cylinder research engine, as well as analytically with the aid of a thick-flame burning simulation. Cylinder pressure measurements, averaged over 100 cycles, have been used in determining average combustion progress an cyclic variations in early burning time. The dependence of early (0-10%) and main (10-90%) combustion durations on load, speed, equivalence ratio, and chamber geometry (disc vs. bathtub) have been determined. A combustion simulation based on laminar burning at the Taylor microscale, with rapid flame propagation in regions of concentrated vorticity, has been used to estimate burning zone thickness, flame propagation rate, and the amplitude of cyclic variations in the early combustion period. The simulation provides a good representation of combustion over a wide range of operating conditions.
Technical Paper

Combustion and Emissions of Paired-Nozzle Jets in a Pilot-Ignited Direct-Injection Natural Gas Engine

2016-04-05
2016-01-0807
This paper examines the combustion and emissions produced using a prototype fuel injector nozzle for pilot-ignited direct-injection natural gas engines. In the new geometry, 7 individual equally-spaced gas injection holes were replaced by 7 pairs of closely-aligned holes (“paired-hole nozzle”). The paired-hole nozzle was intended to reduce particulate formation by increasing air entrainment due to jet interaction. Tests were performed on a single-cylinder research engine at different speeds and loads, and over a range of fuel injection and air handling conditions. Emissions were compared to those resulting from a reference injector with equally spaced holes (“single-hole nozzle”). Contrary to expectations, the CO and PM emissions were 3 to 10 times higher when using the paired-hole nozzles. Despite the large differences in emissions, the relative change in emissions in response to parametric changes was remarkably similar for single-hole and paired-hole nozzles.
Technical Paper

Conditional Source-Term Estimation for the Numerical Simulation of Turbulent Combustion in Homogeneous-Charge SI Engines

2014-10-13
2014-01-2568
Conditional source-term estimation (CSE) is a novel chemical closure method for the simulation of turbulent combustion. It is less restrictive than flamelet-based models since no assumption is made regarding the combustion regime of the flame; moreover, it is computationally cheaper than conventional conditional moment closure (CMC) models. To date, CSE has only been applied for simulating canonical laboratory flames such as steady Bunsen burner flames. Industry-relevant problems pose the challenge of accurately modelling a transient ignition process in addition to involving complex domaingeometries. In this work, CSE is used to model combustion in a homogeneous-charge natural gas fuelled SI engine. The single cylinder Ricardo Hydra research engine studied here has a relatively simple chamber geometry which is represented by an axisymmetric mesh; moving-mesh simulations are conducted using the open-source computational fluid dynamics software, OpenFOAM.
Technical Paper

Development of a Research-Oriented Cylinder Head with Modular Injector Mounting and Access for Multiple In-Cylinder Diagnostics

2017-09-04
2017-24-0044
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
Technical Paper

Direct-Injected Hydrogen-Methane Mixtures in a Heavy-Duty Compression Ignition Engine

2006-04-03
2006-01-0653
A diesel pilot-ignited, high-pressure direct-injection of natural gas heavy-duty single-cylinder engine was fuelled with both natural gas and blends of 10% and 23% by volume hydrogen in methane. A single operating condition (6 bar GIMEP, 0.5 ϕ, 800 RPM, 40%EGR) was selected, and the combustion phasing was varied from advanced (mid-point of combustion at top-dead-center) to late (mid-point of combustion at 15°ATDC). Replacing the natural gas with hydrogen/methane blend fuels was found to have a significant influence on engine emissions and on combustion stability. The use of 10%hydrogen was found to slightly reduce PM, CO, and tHC emissions, while improving combustion stability. 23%hydrogen was found to substantially reduce CO and tHC emissions, while slightly increasing NOx. The greatest reductions in CO and tHC, along with a significant reduction in PM, were observed at the latest combustion timings, where combustion stability was lowest.
Technical Paper

Directly Injected Natural Gas Fueling of Diesel Engines

1996-08-01
961671
A new injector has been designed for sequential injection of high-pressure natural gas and a quantity of liquid diesel fuel directly into diesel engine cylinders late in the compression stroke. Injected a few degrees before the natural gas, the pilot liquid fuel auto-ignites and serves, as it burns, to ignite the gaseous fuel which enters the chamber as an underexpanded sonic jet generating high local turbulence. Tests on a single-cylinder two-stroke engine with full electronic control have demonstrated the capability of this fueling method to nearly match conventional diesel engine efficiency over a wide range of load and substantially reduce the emissions of oxides of nitrogen (NOx), particulate mater (PM) and carbon dioxide (CO2).
Technical Paper

Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion

2016-04-05
2016-01-0792
Diesel-ignited dual-fuel (DIDF) combustion of natural gas (NG) is a promising strategy to progress the application of NG as a commercially viable compression ignition engine fuel. Port injection of gaseous NG applied in tandem with direct injection of liquid diesel fuel as an ignition source permits a high level of control over cylinder charge preparation, and therefore combustion. Across the broad spectrum of possible combustion conditions in DIDF operation, different fundamental mechanisms are expected to dominate the fuel conversion process. Previous investigations have advanced the understanding of which combustion mechanisms are likely present under certain sets of conditions, permitting the successful modeling of DIDF combustion for particular operating modes. A broader understanding of the transitions between different combustion modes across the spectrum of DIDF warrants further effort.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part I: Late Post Injection

2017-03-28
2017-01-0774
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly non-premixed combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I will investigates the effect of late post injection (LPI) and Part II will study the effect of slightly premixed combustion (SPC) on emission and engine performance. PM reductions and tradeoffs involved with gas late post-injections (LPI) was investigated in a single-cylinder version of a 6-cylinder,15 liter HPDI engine. The post injection contains 10-25% of total fuel mass, and occurs after the main combustion event.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part II: Slightly Premixed Combustion

2017-03-28
2017-01-0763
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly mixing-controlled combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I investigated the effect of late post injection (LPI); the current paper (Part-II) reports on the effects of slightly premixed combustion (SPC) on emission and engine performance. In SPC operation, the diesel injection is delayed, allowing more premixing of the natural gas prior to ignition. PM reductions and tradeoffs involved with gas slightly premixed combustion was investigated in a single-cylinder version of a 6-cylinder, 15 liter HPDI engine.
Technical Paper

Effects of Injection Changes on Efficiency and Emissions of a Diesel Engine Fueled by Direct Injection of Natural Gas

2000-06-19
2000-01-1805
Measurements of performance and emissions of a Detroit Diesel 1-71 engine fueled with natural gas have been made using high-pressure direct-injection (HPDI). Natural gas is injected late in the compression cycle preceded by pilot injection of conventional liquid diesel fuel. With 6 nozzle holes for both natural gas and diesel pilot there was instability in engine operation at low load and wide scatter in emission measurements. Guided by numerical simulation results it was found experimentally that data reproducibility and engine operating stability could both be much improved by using unequal jet numbers for injection of natural gas and pilot diesel. In the range of 100 to 160 bar, combustion rate and NOx emissions increased with gas injection pressure. Best thermal efficiency results were obtained for a gas pressure of 130 bar. By adjusting beginning of injection, NOx reductions of up to 60 % from the diesel baseline could be obtained, while preserving conventional diesel efficiency.
Technical Paper

Fast Exhaust Nephelometer (FEN): A New Instrument for Measuring Cycle-Resolved Engine Particulate Emission

2016-10-17
2016-01-2329
Soot emissions from direct-injection engines are sensitive to the fuel-air mixing process, and may vary between combustion cycles due to turbulence and injector variability. Conventional exhaust emissions measurements cannot resolve inter- or intra-cycle variations in particle emissions, which can be important during transient engine operations where a few cycles can disproportionately affect the total exhaust soot. The Fast Exhaust Nephelometer (FEN) is introduced here to use light scattering to measure particulate matter concentration and size near the exhaust port of an engine with a time resolution of better than one millisecond. The FEN operates at atmospheric pressure, sampling near the engine exhaust port and uses a laser diode to illuminate a small measurement volume. The scattered light is focused on two amplified photodiodes.
Technical Paper

Flow Characteristics of a Gas-Blast Fuel Injector for Direct-Injection Compression-Ignition Engines

2009-06-15
2009-01-1857
Natural gas has a high auto-ignition temperature, therefore natural gas engines use sparks, hot surfaces or separate diesel pilot injects to promote ignition. For example, the high-pressure direction-injection (HPDI) system, available commercially for heavy-duty truck engines, uses a small diesel injection just prior to the main gas injection. A new type of HPDI injector has been developed that injections diesel and gas simultaneously through the same holes. In this paper the operation and flow characteristics of this “co-injector” will be discussed. An injection visualization chamber (IVC) was developed for optical characterization of injections into a chamber at pressures up to 80 bar. A fuel supply system was constructed for precise control of injector fueling and injection timing. Diesel and natural gas are replaced by VISCOR ® and nitrogen to study non-reacting flows.
Technical Paper

Ignition Delay and Combustion Duration with Natural Gas Fueling of Diesel Engines

1996-10-01
961933
The ignition and combustion of natural gas directly injected into a multi-cylinder two-stroke diesel engine and ignited by a pilot liquid diesel injection has been investigated experimentally and with the aid of numerical simulation. Measurements of cylinder pressure and thermal efficiency were supplemented by endoscopic observation of flame development and three-dimensional numerical simulation of the ignition and combustion process. With gas/diesel fueling and appropriate injection timing, ignition delay and combustion duration can be about the same as with 100% diesel liquid fueling. Flame photography indicates that, for the same liquid diesel flow rate, subsequent injection of natural gas has a negligible effect on the ignition delay of the liquid fuel. Relative ignition timing is of major importance in obtaining successful combustion.
Technical Paper

Intensifier-injector for Natural Gas Fueling of Diesel Engines

1992-08-01
921553
Impending Environmental Protection Agency (EPA) regulations will place severe limits on exhaust emissions of heavy duty diesel engines for urban bus and highway truck applications. To meet this challenge an intensifier-injector system for natural gas fueling of diesel engines is being developed. The intensifier-injector concept employs electronically-controlled, late-cycle, direct injection of high-pressure natural gas with a pilot quantity of diesel fuel. Preliminary performance and emissions data are presented to indicate the potential for diesel engine efficiencies with reduced emissions with this method of natural-gas fueling.
X