Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Visual Study of D.I. Diesel Combustion from the Under and Lateral Sides of an Engine

1986-09-01
861182
A high-speed photographic study is presented illustrating the influence of engine variables such as an introduced air swirl, the number of nozzle holes and the piston cavity diameter, on the combustion process in a small direct-injection (D.I.) diesel engine. The engine was modified for optical access from the under and lateral sides of the combustion chamber. This modification enabled a three-dimensional analysis of the flame motion in the engine. The swirling velocity of a flame in a combustion chamber was highest in the piston cavity, and outside the piston cavity it became lower at the piston top and at the cylinder head in that order. The swirl ratio of the flame inside the cavity radius attenuated gradually with piston descent and approached the swirl ratio outside the cavity radius, which remained approximately constant during the expansion stroke. Engine performance was improved by retarding the attenuation of the swirl motion inside the cavity radius.
Technical Paper

An Experimental Study on Mixture Formation Process of Flat Wall Impinging Spray Injected by Micro-Hole Nozzle under Ultra-High Injection Pressures

2008-06-23
2008-01-1601
Increasing injection pressure and decreasing nozzle hole diameter have been proved to be two effective approaches to reduce the exhaust emissions and to improve the fuel economy. Recently, the micro-hole nozzles and ultra-high injection pressures are applicable in commercial Diesel engines. But the mechanism of these two latest technologies is still unclear. The current research aims at providing information on the spray and mixture formation processes of the micro-hole nozzle (d=0.08mm) under the ultra-high injection pressure (Pinj=300MPa). The flat wall impinging sprays were focused on and the laser absorption-scattering (LAS) technique was employed to obtain the qualitative and quantitative information at both atmospheric and elevated conditions. The spray parameters were collected, the mixing rate was discussed, and the effects of various parameters on mixture formation were clarified.
Technical Paper

Combustion Characteristics of Diesel Spray with Temporally-Splitting High-Pressure Injection

2015-11-17
2015-32-0825
The effect of temporally-splitting high pressure injection on Diesel spray combustion and soot formation processes was studied by using the high-speed video camera. The spray was injected by the single-hole nozzle with a hole diameter of 0.11mm into the high-pressure and high-temperature constant volume vessel. The free spray and the spray impingement on the two dimensional (2D) piston cavity wall were examined. Injection pressures of 100 and 160 MPa for the single injection and 160 MPa for the split injection were selected. The flame structure and soot formation process were examined by using the two-color pyrometry. The soot generated in the flame under the split injection under 160 MPa becomes higher than that of the single injection under 160 MPa.
Technical Paper

Cross-Flow Effect on Behavior of Fuel Spray Injected by Hole-Type Nozzle for D.I. Gasoline Engine

2013-10-14
2013-01-2553
Spray characteristics are of great importance to achieve fuel economy and low emissions for a D.I. gasoline engine. In this study, the characteristics of the fuel spray as well as its interaction with a cross-flow were investigated. The fuel was injected by a VCO injector into an optically accessible rectangular wind tunnel under the normal temperature and pressure, in which the direction of the injection was perpendicular to the direction of the cross-flow. The velocity of the cross-flow varied from 0 to 10 m/s while the injection pressure was 5 and 10 MPa. With using the high speed video camera and the PIV system, the spray profile, velocity distribution and the penetration distance were measured. The lower penetration distance can be obtained with the lower injection pressure and the increased velocity of the cross-flow, however the injected fuel expands along the direction of the cross-flow, which indicates that spray atomization and mixing of fuel and air are enhanced.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Technical Paper

Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray

2007-07-23
2007-01-1890
Experimental study has been carried out on the effects of the micro-hole nozzle injector and ultra-high injection pressure on the mixture properties of D.I. Diesel engine. A manually operated piston screw pump, High Pressure Generator, was used to obtain ultra-high injection pressures. Three kinds of injection pressures, 100MPa, 200MPa, and 300MPa, were applied to a specially designed injector. Four kinds of nozzle hole diameters, 0.16mm, 0.14mm, 0.10mm, and 0.08mm, were adopted in this study. The laser absorption-scattering (LAS) technique was used to analyze the equivalence ratio distributions, Sauter mean diameter, spray tip penetration length, and other spray characteristics. The analyses of the experimental results show that the micro-hole nozzle and ultra-high injection pressure are effective to increase the turbulent mixing rate and to form the uniform and lean fuel-air mixture.
Technical Paper

Fuel Spray Trajectory and Dispersion in a D.I. Diesel Combustion Chamber

1989-02-01
890462
Experiments and modeling of the fuel spray trajectory and dispersion influenced by both a swirling gas flow and wall impingement were performed under simulated direct injection (D.I.) diesel engine conditions at a high pressure and high temperature. A spray was injected into the steady swirling gas flow and impinged on the simulated piston cavity wall in a constant-volume bomb. High-speed Schlieren photographs provided the informative data on the behavior of the spray vaporizing in such diesel-like circumstances. A simplified computational model was developed to describe the spray trajectory and the fuel vapor dispersion in the D.I. diesel combustion chamber. The model includes the effects of the breakup on the trajectory and the vaporization of the spray, and the effects of the swirling gas flow and the wall impingement on the dispersion of the fuel vapor.
Technical Paper

Injection Strategy to Enhance Mixture Formation and Combustion of Fuel Spray in Diesel Engine

2018-04-03
2018-01-0241
Increasing the injection pressure and splitting the injection stage are the major approaches for a diesel engine to facilitate the fuel-air mixture formation process, which determines the subsequent combustion and emission formation. In this study, the free spray was injected by a single-hole nozzle with a hole-diameter of 0.111 mm. The impinging spray, formed by a two-dimensional (2D) piston cavity having the same shape as a small-bore diesel engine, was also investigated. The injection process was performed by both with and without pre-injection. The main injection was carried out either as a single main injection with injection pressure of 100 MPa (Pre + S100) or a split main injection with 160 MPa defined by the mass fraction ratio of 3:1 (Pre + D160_3-1). The tracer Laser Absorption Scattering (LAS) technique was adopted to observe the spray mixture formation process. The ignition delay/location and the soot formation in the spray flame were analyzed by the two-color method.
Technical Paper

Measurement of Turbulent Flow in the Combustion Chamber of a D.I. Diesel Engine

1990-02-01
900061
This paper presents the experimental analysis for the turbulence in the combustion chamber of a direct injection (D.I.) diesel engine. A dual beam mode, forward-scattering laser doppler velocimeter was applied to the flow measurement in a four-stroke, single-cylinder direct injection diesel engine of 110 mm bore and 125 mm stroke. The turbulence component was separated from instantaneous velocity using a high-pass filter. As a result, the difference in turbulent intensity between the intake and compression processes was discussed. Also, the effect of intake port and piston cavity shapes, the compression ratio and the engine speed on the turbulent intensity were clarified. In addition, the empirical equation for the decay of turbulent intensity in the compression process was expressed by a function of the Reynolds number based on the mean swirling flow.
Technical Paper

Optimizing Spray Behavior to Improve Engine Performance and to Reduce Exhaust Emissions in a Small D.I. Diesel Engine

1989-02-01
890463
The effects of engine parameters, such as spray characteristics and combustion chamber geometry on performance and exhaust emissions in a small D.I. diesel engine were investigated to find out the optimum way of improving the engine. Diesel spray injected into a high-pressure vessel was photographically analyzed to guess the spray behavior in a firing diesel engine. The ratio of hole length to the diameter of a nozzle (L/D) was varied from 3 to 7 as the main parameter of the nozzle. Piston cavity diameter and intake swirl were chosen as the other parameters. The effect of the above parameters was investigated in terms of brake specific fuel consumption (BSFC), exhaust smoke, nitric oxides (NOx) and total hydrocarbon (THC). The L/D of the nozzle is concluded to be of major importance in terms of BSFC and THC emission. Smaller piston cavity diameters lead to lower exhaust smoke, but to a higher level of NOx emission.
Technical Paper

Split Injection Spray Development, Mixture Formation, and Combustion Processes in a Diesel Engine Piston Cavity: Rig Test and Real Engine Results

2018-09-10
2018-01-1698
The objectives of this study are to investigate the effects of premixed charge compression ignition (PCCI) strategies with split injection on soot emission characteristics. The split injection conditions included three injection intervals (1.1 ms, 1.3 ms, and 1.5 ms) and three injection quantity fraction ratios (Q1/Q2 = 10.0/14.6 mm3/st, 15.2/9.4 mm3/st, and 20.0/4.6 mm3/st). The results in real engine tests showed that shorter injection intervals, and the 1st injection quantity contributes to reduced soot emissions. A rig test with high-pressure and high-temperature constant-volume vessel (CVV) and a two-dimensional (2D) model piston cavity were used to determine correlations between injection conditions and soot emissions. During the rig test, fuel was injected into the CVV by a single-hole nozzle under split injection strategies. The injection strategies include the same injection intervals and quantity fraction ratios as in the real engine test.
Technical Paper

Swirl Measurements and Modeling in Direct Injection Diesel Engines

1988-02-01
880385
A simple, but useful method is described for predicting the swirl speed during the compression process in a direct injection diesel engine. The method is based on the idea of dividing the combustion chamber into two volumetric regions and computing the variation of the angular momentum in each region. Laser doppler velocimeter measurements in a motored engine proved the validity of the idea that the volume in the combustion chamber should be treated as two regions, that is, the cylindrical volume inside the piston-cavity radius, and the annular volume outside the piston-cavity radius. Distributions of tangential velocities were measured for different conditions, including the intake port configuration, the piston cavity shape, the compression ratio and the engine speed. These results were integrated in the two regions and provided the measured “two volume-regions” swirl ratio. At the same time, the computation was carried out for the same experimental conditions.
Technical Paper

Three-Dimensional Spray Distributions in a Direct Injection Diesel Engine

1994-09-01
941693
Experiments and modeling of a spray impinged onto a cavity wall of a simulated piston were performed under simulated diesel engine conditions (pressure and density) at an ambient temperature. The diesel fuel was delivered from a Bosch-type injection pump to a single-hole nozzle, the hole being drilled in the same direction as the original five-hole nozzle. The fuel was injected into a high-pressure bomb in which an engine combustion chamber, composed of a piston, a cylinder head and a cylinder liner, was installed. Distributions of the spray impinged on the simulated combustion chamber were observed from various directions while changing some of the experimental parameters, such as combustion chamber shape, nozzle projection and top-clearance. High-speed photography was used in the constant volume bomb to examine the effect of these parameters on the spray distributions.
Technical Paper

Total In-Cylinder Sampling Experiment on Emission Formation Processes in a D.I. Diesel Engine

1990-10-01
902062
An experimental study on emission formation processes, such as these of nitric oxide, particulate and total hydrocarbon in a small direct injection (D.I.) diesel engine was carried out by using a newly developed total in-cylinder sampling technique. The sampling method consisted of rapidly opening a blowdown valve attached to the bottom of the piston bowl, and quickly transferring most of the in-cylinder contents into a large sampling chamber below the piston. No modification of the intake and exhaust ports in a cylinder head was required for the installation of the blowdown apparatus. The sampling experiment gave a history of spatially-averaged emission concentrations in the cylinder. The effects of several engine variables, such as the length-to-diameter ratio of the nozzle hole, the ratio of the piston bowl diameter to the cylinder bore and the intake swirl ratio, on the emission formation processes were investigated.
X