Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Application of the Linear and Time-Invariant Method for the System-Level Thermal Simulation of an EV Battery

2015-04-14
2015-01-1197
This paper presents a system-level thermal model of a fluid-cooled Li-Ion battery module. The model is a reduced order model (ROM) identified by results from finite element analysis (FEA)/computational fluid dynamic (CFD) coupling simulation using the linear and time-invariant (LTI) method. The ROM consists of two LTI sub-systems: one of which describes the battery temperature response to a transient battery current, and the other of which takes into account of the battery temperature variation due to a heat flux induced by a varied inlet temperature of the battery cooling circuit. The thermal LTI model can be coupled to an electrical model to build a complete system-level battery ROM. Test examples show that the ROM is able to provide as accurate results as those from FEA/CFD coupling simulations.
Technical Paper

Computational Study of a DrivAer Model by Using the Partially-Averaged Navier-Stokes Approach in Combination with the Immersed Boundary Method

2024-04-09
2024-01-2527
This paper presents calculations of external car aerodynamics by using the Partial-Averaged Navier-Stokes (PANS) variable resolution model in conjunction with the Finite Volume (FV) immersed-boundary method. The work presented here is the continuation of the study reported in Basara et al. [1, 2]. In that work, it was shown that the same accuracy of predicted aerodynamic forces could be achieved for both types of computational meshes, the standard body-fitted mesh and the immersed boundary (IB) Cartesian mesh, by using the Reynolds-Averaged Navier-Stokes (RANS) k-ζ-f model as well as by using the Partially-Averaged Navier-Stokes (PANS) method. Based on the accuracy achieved, Basara et al. [2] concluded that further work could focus on evaluating the turbulence modelling on the immersed boundary meshes only.
Technical Paper

LES Simulation of Direct Injection SI-Engine In-Cylinder Flow

2012-04-16
2012-01-0138
The present paper deals with the application of the LES approach to in-cylinder flow modeling. The main target is to study cycle-to-cycle variability (CCV) using 3D-CFD simulation. The engine model is based on a spark-ignited single-cylinder research engine. The results presented in this paper cover the motored regime aiming at analysis of the cycle-resolved local flow properties at the spark plug close to firing top dead center. The results presented in this paper suggest that the LES approach adopted in the present study is working well and that it predicts CCV and that the qualitative trends are in-line with established knowledge of internal combustion engine (ICE) in-cylinder flow. The results are evaluated from a statistical point of view based on calculations of many consecutive cycles (at least 10).
Technical Paper

Scale-Resolving Simulations Combined with the Immersed Boundary Method for Predicting Car Aerodynamics

2023-04-11
2023-01-0561
This paper presents calculations of external car aerodynamics by using the Partial-Averaged Navier-Stokes (PANS) variable resolution model in conjunction with the finite volume (FV) immersed-boundary method. The work presented here is the continuation of the study reported in Basara et al. [1]. In that work, it was shown that the same accuracy of predicted aerodynamic forces can be achieved by using Reynolds-Averaged Navier-Stokes (RANS) k-ζ-f model on both types of meshes, the standard body-fitted (BF), and on the immersed boundary (IB) mesh. Due to all well-known shortcomings of the steady state approach, in this work we deal with the Partially Averaged Navier-Stokes (PANS), which belongs to the hybrid RANS-LES (scale resolving / high fidelity) methods. This approach was developed to resolve a part of the turbulence spectrum adjusting seamlessly from RANS to DNS (Direct Numerical Simulation).
X