Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Adaptive Air Fuel Ratio Optimisation of a Lean Burn SI Engine

1996-05-01
961156
An adaptive air fuel ratio (AFR) control system has been implemented on a modern high performance fuel injected four cylinder engine. A pressure transducer in the combustion chamber is used to measure the indicated mean effective pressure (IMEP) for efficiency and cyclic variability feedback. The controller tunes the relative AFR, λ, in the range λ = 1 to λ = 1.5, to maximise the thermal efficiency in real time. The system adaptively accounts for changes in operating conditions such as ambient temperatures and user demands. The IMEP feedback allows the closed loop control system to update every few revolutions with short tune in times in the order of seconds. Open and closed loop test results are presented, demonstrating the incremental efficiency gains over fixed or mapped AFR control. The system continually adjusts the fuelling for maximum efficiency given its constraints and provides a basis for optimisation of future lean burn technologies.
Journal Article

An Integrated Model of Energy Transport in a Reciprocating, Lean Burn, Spark Ignition Engine

2015-04-14
2015-01-1659
This paper presents a combined experimental and numerical method for analysing energy flows within a spark ignition engine. Engine dynamometer data is combined with physical models of in-cylinder convection and the engine's thermal impedances, allowing closure of the First Law of Thermodynamics over the entire engine system. In contrast to almost all previous works, the coolant and metal temperatures are not assumed constant, but rather are outputs from this approach. This method is therefore expected to be most useful for lean burn engines, whose temperatures should depart most from normal experience. As an example of this method, the effects of normalised air-fuel ratio (λ), compression ratio and combustion chamber geometry are examined using a hydrogen-fueled engine operating from λ = 1.5 to λ = 6. This shows large variations in the in-cylinder wall temperatures and heat transfer with respect to λ.
Technical Paper

Comparing the Performance and Limitations of a Downsized Formula SAE Engine in Normally Aspirated, Supercharged and Turbocharged Modes

2006-11-13
2006-32-0072
This paper compares the performance of a small two cylinder, 430 cm3 engine which has been tested in a variety of normally aspirated (NA) and forced induction modes on 98-RON pump gasoline. These modes are defined by variations in the induction system and associated compression ratio (CR) alterations needed to avoid knock and maximize volumetric efficiency (ηVOL). These modes included: (A) NA with carburetion (B) NA with port fuel injection (PFI) (C) Mildly Supercharged (SC) with PFI (D) Highly Turbocharged (TC) with PFI The results have significant relevance in defining the limitations for small downsized spark ignition (SI) engines, with power increases needed via intake boosting to compensate for the reduced swept volume. Performance is compared in the varying modes with comparisons of brake mean effective pressure (BMEP), brake power, ηVOL, brake specific fuel consumption (BSFC) and brake thermal efficiency (ηTH).
Technical Paper

Development of a 430cc Constant Power Engine for FSAE Competition

2006-04-03
2006-01-0745
This paper describes the design and development of an engine with constant power for SAE's student Formula race-car competition, allowing the avoidance of gear shifting for much of the Autocross event. To achieve constant power for over 50% of the speed range, turbocharging was adopted with a boost pressure ratio of 2.8 at mid-range speeds and applied to an engine capacity of 430 cc. This engine was specifically designed and configured for the purpose, being a twin cylinder in-line arrangement with double overhead camshafts. Most of the engine components were specially cast or machined from billets. The capacity was selected to minimise frictional losses and thus increase delivered power along with dry sump lubrication and a three speed gear box. The engine manifolds and plenums were designed using a CAE application and proved to be well suited to the task resulting in excellent agreement between predicted and actual performance.
Journal Article

Development of a Direct Injection High Efficiency Liquid Phase LPG Spark Ignition Engine

2009-06-15
2009-01-1881
Direct Injection (DI) is believed to be one of the key strategies for maximizing the thermal efficiency of Spark Ignition (SI) engines and meet the ever-tightening emissions regulations. This paper explores the use of Liquefied Petroleum Gas (LPG) liquid phase fuel in a 1.5 liter SI four cylinder gasoline engine with double over head camshafts, four valves per cylinder, and centrally located DI injector. The DI injector is a high pressure, fast actuating injector enabling precise multiple injections of the finely atomized fuel sprays. With DI technology, the injection timing can be set to avoid fuel bypassing the engine during valve overlap into the exhaust system prior to combustion. The fuel vaporization associated with DI reduces combustion chamber and charge temperatures, thereby reducing the tendency for knocking. Fuel atomization quality supports an efficient combustion process.
Technical Paper

Effects of Engine Speed on Spray Behaviors of the Engine Combustion Network “Spray G” Gasoline Injector

2018-04-03
2018-01-0305
Non-reacting spray behaviors of the Engine Combustion Network “Spray G” gasoline fuel injector were investigated at flash and non-flash boiling conditions in an optically accessible single cylinder engine and a constant volume spray chamber. High-speed Mie-scattering imaging was used to determine transient liquid-phase spray penetration distances and observe general spray behaviors. The standardized “G2” and “G3” test conditions recommended by the Engine Combustion Network were matched in this work and the fuel was pure iso-octane. Results from the constant volume chamber represented the zero (stationary piston) engine speed condition and single cylinder engine speeds ranged from 300 to 2,000 RPM. As expected, the present results indicated the general spray behaviors differed significantly between the spray chamber and engine. The differences must be thoughtfully considered when applying spray chamber results to guide spray model development for engine applications.
Technical Paper

HAJI Operation in a Hydrogen-Only Mode for Emission Control at Cold Start

1995-02-01
950412
The HAJI (Hydrogen Assisted Jet Ignition) system for S.I. engines utilises direct injection of small amounts of hydrogen to enhance the combustion of a variety of automotive fuels. Although not the primary purpose of HAJI, the hardware, once in place, also lends itself to the possibility of hydrogen-only running during a cold start. Cold-start simulations have been performed using a single cylinder engine. Results are presented, comparing hydrogen-only tests with standard HAJI operation and normal spark-ignition operation. HAJI and spark ignition tests were carried out with gasoline as the main-chamber fuel. Emission levels and combustion stability characteristics were recorded as the engine warmed up. The differences between the various fueling/ignition scenarios are presented and the implications for possible automotive applications are discussed in light of current and proposed emissions legislation.
Technical Paper

Highly Turbocharging a Restricted, Odd Fire, Two Cylinder Small Engine - Design, Lubrication, Tuning and Control

2006-12-05
2006-01-3637
This paper describes the mechanical component design, lubrication, tuning and control aspects of a restricted, odd fire, highly turbocharged (TC) engine for Formula SAE competition. The engine was specifically designed and configured for the purpose, being a twin cylinder inline arrangement with double overhead camshafts and four valves per cylinder. Most of the engine components were specially cast or machined from billets. A detailed theoretical analysis was completed to determine engine specifications and operating conditions. Results from the analysis indicated a new engine design was necessary to sustain highly TC operation. Dry sump lubrication was implemented after initial oil surge problems were found with the wet sump system during vehicle testing. The design and development of the system is outlined, together with brake performance effects for the varying systems.
Technical Paper

Hydrocarbon Emissions from a HAJI Equipped Ultra-lean Burn SI Engine

1998-02-23
980044
Hydrogen Assisted Jet Ignition (HAJI) is a novel method of maintaining combustion stability during ultra-lean operation of conventional, homogeneously charged, SI engines. When operating with HAJI above λ=2, CO and NOx emissions fall to low levels while HC emissions rise to approximately double their stoichiometric value. HC emissions were investigated by operating a HAJI equipped, optically accessible, four-valve single cylinder engine at 600 r/min, wide open throttle (WOT), and from λ=1 to λ=2.4. A fast flame ionisation detector was used to collect real time hydrocarbon concentration data from behind one of the exhaust valves, inside the HAJI pre-chamber, and from near the combustion chamber wall. Flame images were also obtained. Exhaust port sampling shows that the HC concentration during blowdown and early exhaust is increased, but the concentration at the end of exhaust is decreased.
Technical Paper

Observation of the Effect of Swirl on Flame Propagation and the Derived Heat Release and Mass Burning Rates

1987-11-08
871175
A high speed research engine has optical access to over 80% of the combustion chamber volume through a piston with a quartz window. The engine has been used to study the effect of swirl on the spark-ignited combustion by means of high speed photography and analysis of combustion-time data. Results over the speed, swirl and mixture strength range show the flame travel derived from the pressure to agree with the measured flame travel to within 3% on average. Turbulent to laminar flame speed ratios as high as 45 occur under high swirl conditions. However it was not possible to find a predictive model which could explain the turbulent flame speed in terms of engine design variables.
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
Technical Paper

Optimum Control of an S.I. Engine with a λ=5 Capability

1995-02-01
950689
HAJI (Hydrogen Assisted Jet Ignition) is an advanced combustion initiation system for otherwise standard S.I engines. It utilises the fluid mechanics of a turbulent, chemically active jet, combined with the reliability of spark igniting rich hydrogen mixtures. The result is an extremely robust ignition system, capable of developing power from an engine charged with air-fuel mixtures as lean as λ = 5. Experiments have been performed using a single cylinder engine operating on gasoline in the speed range of 600-1800 r/min. Data are presented in the form of maps which describe fuel efficiency, combustion stability and emissions with respect to load, speed, air-fuel ratio and throttle. The results are incorporated into a model of a known engine and vehicle and this is used to estimate performance over the Federal drive-cycle.
Technical Paper

Simulation of Spark Ignition Engine Combustion Using Lagrangian Code

1993-11-01
931908
A new method of solution is presented for the equations governing unsteady flow field during compression and combustion in a spark ignition. The Lagrangian approach, an application of a vortex method to the three-dimensional solution of the continuity and conservation equations, avoids the need for a turbulence model and wall laws close to the surfaces. Vorticity is introduced as blobs close to the wall which diffuse into the main flow. The potential equation is solved by the boundary element method. Combustion is treated as a thin sheet propagating at laminar flame speed using an extension of the simple line interface method to three-dimensions, now called a simple plane interface method. The code is demonstrated in application to a wedge shaped combustion chamber with surface irregularities closely approximating the actual shape.
Technical Paper

Spatial and Temporal Temperature Distributions in a Spark Ignition Engine Piston at WOT

2007-04-16
2007-01-1436
Two coupled finite element analysis (FEA) programs were written to determine the transient and steady state temperature distribution in a spark ignition engine piston. The programs estimated the temperatures at each crank angle degree (CAD) through warm-up to thermal steady state. A commercial FEA code was used to combine the steady state temperature distribution with the mechanical loads to find the stress response at each CAD for one complete cycle. The first FEA program was a very fast and robust non-linear thermal code to estimate spatial and time resolved heat flux from the combustion chamber to the aluminum alloy piston crown. This model applied the energy conservation equation to the near wall gas and includes the effects of turbulence, a propagating heat source, and a quench layer allowing estimates of local, instantaneous near-wall temperature gradients and the resulting heat fluxes.
Technical Paper

The Always Lean Burn Spark Ignition (ALSI) Engine – Its Performance and Emissions

2009-04-20
2009-01-0932
This paper is based on extensive experimental research with lean burn, high compression ratio engines using LPG, CNG and gasoline fuels. It also builds on recent experience with highly boosted spark ignition gasoline and LPG engines and single cylinder engine research used for model calibration. The final experimental foundation is an evaluation of jet assisted ignition that generally allows a lean mixture shift of more than one unit in lambda with consequential benefits of improved thermal efficiency and close to zero NOx. The capability of an ultra lean burn spark ignition engine is described. The concept is operation at air-fuel ratios similar to the diesel engine but with essentially homogenous charge, although some stratification may be desirable. To achieve high thermal efficiency this engine has optimized compression ratio but with variable valve timing which enables reduction in the effective compression ratio when desirable.
Technical Paper

Top Land Crevice and Piston Deflection Effects on Combustion in a High Speed Rotary Valve Engine

2008-12-02
2008-01-3005
The Bishop Rotary Valve (BRV) has the opportunity for greater breathing capacity than conventional poppet valve engines. However the combustion chamber shape is different from conventional engine with no opportunity for a central spark plug. This paper reports the development of a combustion analysis and design model using KIVA-3V code to locate the ignition centers and to perform sensitivity analysis to several design variables. Central to the use of the model was the tuning of the laminar Arrhenius model constants to match the experimental pressure data over the speed range 13000-20000 rpm. Piston ring crevices lands and valve crevices is shown to be an important development area and connecting rod piston stretch has also been accommodated in the modeling. For the proposed comparison, a conventional 4 valve per cylinder poppet valve engine of nearly equal IMEP has been simulated with GT-POWER.
Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

2007-08-05
2007-01-3552
This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
X