Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
Technical Paper

A Fuel Rate Based Catalyst Pass Fraction Model for Predicting Tailpipe NOx Emissions from a Composite Car

1999-03-01
1999-01-0455
Modeling tailpipe NOx emissions has always been difficult due to the complexity of the numerous factors involved in the catalytic conversion of the pollutant. Most emissions modeling has been based on steady state driving. A parameterized algebraic model for second-by-second tailpipe emissions of NOx for a composite Tier 1 car is presented employing data from the Federal Test Procedure Revision Project (FTPRP). Calculating fuel rate from measured engine out values, the catalytic converter is physically modeled based on the fuel rate history and a few fitted parameters. Under certain conditions, the changes in fuel rate are related to trends in the air to fuel ratio. The model accurately predicts the time dependence of hot stabilized tailpipe NOx emissions in the FTP bag 3 and US06 driving cycles. Modeling of low power driving, as in bag 2, is not as successful.
Technical Paper

A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies

1996-02-01
960073
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The success of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

A LNT+SCR System for Treating the NOx Emissions from a Diesel Engine

2006-04-03
2006-01-0210
An aftertreatment system involving a LNT followed by a SCR catalyst is proposed for treating the NOx emissions from a diesel engine. NH3 (or urea) is injected between the LNT and the SCR. The SCR is used exclusively below 400°C due to its high NOx activity at low temperatures and due to its ability to store and release NH3 below 400°C, which helps to minimize NH3 and NOx slip. Above 400°C, where the NH3 storage capacity of the SCR falls to low levels, the LNT is used to store the NOx. A potassium-based LNT is utilized due to its high temperature NOx storage capability. Periodically, hydrocarbons are oxidized on the LNT under net lean conditions to promote the thermal release of the NOx. NH3 is injected simultaneously to reduce the released NOx over the SCR. The majority of the hydrocarbons are oxidized on the front portion of the LNT, resulting in the rapid release of stored NOx from that portion of the LNT.
Technical Paper

A New Approach to Modeling Driver Reach

2003-03-03
2003-01-0587
The reach capability of drivers is currently represented in vehicle design practice in two ways. The SAE Recommended Practice J287 presents maximum reach capability surfaces for selected percentiles of a generic driving population. Driver reach is also simulated using digital human figure models. In typical applications, a family of figure models that span a large range of the target driver population with respect to body dimensions is positioned within a digital mockup of the driver's workstation. The articulated segments of the figure model are exercised to simulate reaching motions and driver capabilities are calculated from the constraints of the kinematic model. Both of these current methods for representing driver reach are substantially limited. The J287 surfaces are not configurable for population characteristics, do not provide the user with the ability to adjust accommodation percentiles, and do not provide any guidance on the difficulty of reaches that are attainable.
Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

A Substructuring Formulation for the Energy Finite Element Analysis

2007-05-15
2007-01-2325
In applications of the Energy Finite Element Analysis (EFEA) there is an increasing need for developing comprehensive models with a large number of elements which include both structural and interior fluid elements, while certain parts of the structure are considered to be exposed to an external fluid loading. In order to accommodate efficient computations when using simulation models with a large number of elements, joints, and domains, a substructuring computational capability has been developed. The new algorithm is based on dividing the EFEA model into substructures with internal and interface degrees of freedom. The system of equations for each substructure is assembled and solved separately and the information is condensed to the interface degrees of freedom. The condensed systems of equations from each substructure are assembled in a reduced global system of equations. Once the global system of equations has been solved the solution for each substructure is pursued.
Technical Paper

A Two-Parameter Model for Mixed-Mode Fatigue Crack Growth and Multiaxial Fatigue

2015-04-14
2015-01-0541
Engineering components and systems are usually subjected to mixed-mode and multiaxial fatigue loadings, and these conditions should be considered in product durability and reliability design and the maintenance of aging equipment, especially mission-critical components and systems. However, modeling the damage and degradation processes under these complex loading conditions is difficult and challenging task because not only the concepts, such as range, mean, peak, valley etc., developed for uniaxial loading usually cannot be directly transferred to mixed-mode and multiaxial loadings, but also some very unique phenomena related to these complex loading conditions. One such a phenomenon is the loading path effect that can be simply described as: out-of-phase loading is more damaging than in-phase loading for some ductile materials.
Technical Paper

ADAS Feature Concepts Development Framework via a Low Cost RC Car

2017-03-28
2017-01-0116
ADAS features development involves multidisciplinary technical fields, as well as extensive variety of different sensors and actuators, therefore the early design process requires much more resources and time to collaborate and implement. This paper will demonstrate an alternative way of developing prototype ADAS concept features by using remote control car with low cost hobby type of controllers, such as Arduino Due and Raspberry Pi. Camera and a one-beam type Lidar are implemented together with Raspberry Pi. OpenCV free open source software is also used for developing lane detection and object recognition. In this paper, we demonstrate that low cost frame work can be used for the high level concept algorithm architecture, development, and potential operation, as well as high level base testing of various features and functionalities. The developed RC vehicle can be used as a prototype of the early design phase as well as a functional safety testing bench.
Journal Article

Accessibility and User Performance Modeling for Inclusive Transit Bus Design

2014-04-01
2014-01-0463
The purpose of this paper is to demonstrate the impact of low- floor bus seating configuration, passenger load factor (PLF) and passenger characteristics on individual boarding and disembarking (B-D) times -a key component of vehicle dwell time and overall transit system performance. A laboratory study was conducted using a static full-scale mock-up of a low-floor bus. Users of wheeled mobility devices (n=48) and walking aids (n=22), and visually impaired (n=17) and able-bodied (n=17) users evaluated three bus layout configurations at two PLF levels yielding information on B-D performance. Statistical regression models of B-D times helped quantify relative contributions of layout, PLF, and user characteristics viz., impairment type, power grip strength, and speed of ambulation or wheelchair propulsion. Wheeled mobility device users, and individuals with lower grip strength and slower speed were impacted greater by vehicle design resulting in increased dwell time.
Technical Paper

Air-Bag Inflator Gas-Jet Evaluation

1993-03-01
930237
This paper directs attention to a specific region of the air-bag deployment process. Both experimental and analytical results are presented. Experimental procedures and their results are presented along with a two dimensional unsteady isentropic CFD model and a empirical gas-jet model.
Technical Paper

Alternative Fuel Property Correlations to the Honda Particulate Matter Index (PMI)

2016-10-17
2016-01-2250
The Honda Particulate Matter Index (PMI) is a very helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and vehicle OEMs as a metric to understand a fuels impact on automotive engine sooting, in preparation for new global emissions regulations. The calculation of the index involves generating detailed hydrocarbon analysis (hydrocarbon molecular speciation) using gas chromatography laboratory equipment and the PMI calculation requires the exact list of compounds and correct naming conventions to work properly. The analytical methodology can be cumbersome, when the gas chromatography methodology has to be adjusted for new compounds that are not in the method, or if the compounds are not matching the list for quantification. Also, the method itself is relatively expensive, and not easily transferrable between labs.
Technical Paper

An Approach for Modeling the Effects of Gas Exchange Processes on HCCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies

2002-10-21
2002-01-2829
The present study introduces a modeling approach for investigating the effects of valve events and gas exchange processes in the framework of a full-cycle HCCI engine simulation. A multi-dimensional fluid mechanics code, KIVA-3V, is used to simulate exhaust, intake and compression up to a transition point, before which chemical reactions become important. The results are then used to initialize the zones of a multi-zone, thermo-kinetic code, which computes the combustion event and part of the expansion. After the description and the validation of the model against experimental data, the application of the method is illustrated in the context of variable valve actuation. It has been shown that early exhaust valve closing, accompanied by late intake valve opening, has the potential to provide effective control of HCCI combustion.
Journal Article

An EGR Cooler Fouling Model: Experimental Correlation and Model Uses

2017-03-28
2017-01-0535
Thermal effectiveness of Exhaust Gas Recirculation (EGR) coolers used in diesel engines can progressively decrease and stabilize over time due to inner fouling layer of the cooler tubes. Thermophoretic force has been identified as the major cause of diesel exhaust soot fouling, and models are proposed in the literature but improvements in simulation are needed especially for the long-term trend of soot deposition. To describe the fouling stabilization behavior, a removal mechanism is required to account for stabilization of the soot layer. Observations from previous experiments on surrogate circular tubes suggest there are three primary factors to determine removal mechanisms: surface temperature, thickness, and shear velocity. Based on this hypothesis, we developed a 1D CFD fouling model for predicting the thermal effectiveness reduction of real EGR coolers. The model includes the two competing mechanisms mentioned that results in fouling balance.
Technical Paper

An Evaluation of Airbag Tank-Test Results

1998-02-23
980864
The evaluation of the performance of a particular inflator for the design of the entire airbag system is typically carried out by examining the pressure pattern in a standard tank test. This study assesses the adequacy of the tank test as a true measure of the likely performance of the actual inflator-airbag system. Theoretical arguments, numerical experiments, and physical experiments show that the time rate of pressure change may be an appropriate measure to evaluate performance of a specific type of inflator, particularly if variations in the inflator design maintain the same working gas components. However, when evaluating and comparing the dynamic behavior between different types of inflators, the time rate of pressure change provides useful but incomplete information.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

An Experiment-Based Model of Fabric Heat Transfer and Its Inclusion in Air Bag Deployment Simulations

1999-03-01
1999-01-0437
A numerical model is presented that is capable of isolating and quantifying the heat flux from the gas within the bag to the air bag fabric due to internal surface convection during the inflator discharge period of an air bag deployment. The model is also capable of predicting the volume averaged fabric temperatures during the air bag deployment period. Implementation of the model into an air bag deployment code, namely Inflator Simulation Program (ISP), is presented along with the simulation results for typical inflators. The predicted effect of the heat loss from the bag gas to the fabric on the internal bag gas temperature and pressure and the resulting bulk fabric temperature as a function of fabric parameters and the inflator exit gas properties are presented for both permeable and impermeable air bag fabrics.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

An Experimental Heat Release Rate Analysis of a Diesel Engine Operating Under Steady State Conditions

1997-02-24
970889
An experimental heat release rate analysis was conducted on a six cylinder, 12.7 liter Detroit Diesel Series 60 turbocharged engine operating under steady state conditions. The overall chemical, or gross, rate of heat release and the net apparent rate of heat release were determined from experimental measurements. The gross, time averaged, heat release rate was determined by two separate concepts/methods using exhaust gas concentration measurements from the Nicolet Rega 7000 Real Time Exhaust Gas Analyzer and the measured exhaust gas flow rate. The net apparent rate of heat release was determined from the in-cylinder pressure measurements for each of the six cylinders, averaged over 80 cycles. These pressure measurements were obtained using a VXI based Tektronix data acquisition system and LabVIEW software. A computer algorithm then computed the net apparent rate of heat release from the averaged in-cylinder pressure measurements.
X