Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Hydrodynamic Contact Algorithm

2001-09-24
2001-01-3596
Today, mechanical systems such as the piston groups of internal combustion engines are simulated using Multiple Body-System (MBS) - approaches. However, the use of these models is restricted to a few problems as their adaptability is limited. The simulation of mechanical systems only by means of finite elements shows great promise for the future. In order to consider lubrication effects between two touching bodies of a mechanical system, a hydrodynamic contact algorithm (HCA) for finite element (FE) applications was developed. This paper discusses the technical background and first results for the simulation of a piston group using this new approach.
Technical Paper

A Simulation Method for the Calculation of Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0226
The automotive industry uses supercharging in combination with various EGR strategies to meet the increasing demand for Diesel engines with high efficiency and low engine emissions. The charge air is heated by the EGR and the compression in the turbocharger to such an extent that high NOx emissions and a reduction in engine performance occurs. For this reason, the charge air cooler cools down the charge air before it enters the air intake manifold. In case of low pressure EGR, the charge air possesses a high moisture content and under certain operating conditions an accumulation of condensate takes place within the charge air cooler. During demanding engine loads, the condensate is entrained from the charge air cooler into the combustion chamber, resulting in misfiring or severe engine damage.
Technical Paper

Cycle Resolved Flow Field Measurements Using a PIV Movie Technique in a SI Engine

1992-10-01
922354
2-dimensional time resolved (200 frames/s) flow field measurements have been made in a transparent SI square piston engine using a movie version of particle image velocimetry (PIV). To this end the beam of a copper vapor laser was formed into a light sheet and was double pulsed with a pulse separation of 50 μs at a repetition rate of 200 Hz. A rotating drum camera was used to record the Mie-scattered signals from seeding particles. The circumferential velocity of the drum of the camera causes an image shifting of the two exposures taken with a double pulse. By proper adaption of drum and engine speed, a series of up to 70 double pulsed images per individual engine cycle may be recorded on film. This film data may be evaluated uniquely with respect to both magnitude and direction of individual flow vectors in the flow field.
Technical Paper

Cycle-Resolved Hydrogen Flame Speed Measurements with High Speed Schlieren Technique in a Hydrogen Direct Injection SI Engine

1994-10-01
942036
The influence of internal mixture formation oil hydrogen combustion in a SI engine was investigated using high speed Schlieren photography. To this end a computer controlled high pressure injection system for direct injection of gaseous hydrogen was developed. The injection system for hydrogen direct injection consists of an electronic control unit, a solenoid valve and a purpose developed injector. The timing and the duration of the hydrogen injection are controlled by an electronic unit. The fuel-air ratio was varied by adjusting the opening time of the solenoid valve. The hydrogen was fed into the combustion chamber of the engine with a pressure of 6.0 MPa. With this injection system and injection pressure it, is possible to inject the hydrogen into the combustion chamber of the engine even during hydrogen combustion. In order to compare the results of internal mixture formation, experiments with external mixture formation were also performed.
Technical Paper

Efficient Post-Processing Method for Identification of Local Hotspots in 3D CFD Simulations

2022-06-14
2022-37-0005
Knocking is one of today’s main limitations in the ongoing efforts to increase efficiency and reduce emissions of spark-ignition engines. Especially for synthetic fuels or any alternative fuel type in general with a much steeper increase of the knock frequency at the KLSA, such as hydrogen, precise knock prediction is crucial to exploit their full potential. This paper therefore proposes a post-processing tool enabling further investigations to continuously gain better understanding of the knocking phenomenon. In this context, evaluation of local auto-ignitions preceding knock is crucial to improve knowledge about the stochastic occurrence of knock but also identify critical engine design to further optimize the geometry. In contrast to 0D simulations, 3D CFD simulations provide the possibility to investigate local parameters in the cylinder during the combustion.
Journal Article

Experimental Investigation of the Pressure Drop during Water Condensation inside Charge Air Coolers

2021-04-06
2021-01-0202
This paper investigates the pressure drop with and without condensation inside a charge air cooler. The background to this investigation is the fact that the stored condensate in charge air coolers can be torn into the combustion chamber during different driving states. This may result in misfiring or in the worst-case lead to an engine failure. In order to prevent or reduce the accumulated condensate inside charge air coolers, a better understanding of the detailed physics of this process is required. To this end, one single channel of the charge air side is investigated in detail by using an experimental setup that was built to reproduce the operating conditions leading to condensation. First, measurements of the pressure drop without condensation are conducted and a good agreement with experimental data of a comparable heat exchanger reported in Kays and London [1] is shown.
Technical Paper

Knock Model Covering Thermodynamic and Chemical Influences on the Two-Stage Auto-Ignition of Gasoline Fuels

2021-04-06
2021-01-0381
Engine knock is limiting the efficiency of spark ignition engines and consequently further reduction of CO2 emissions. Thus, an combustion process simulation needs a well working knock model to take this phenomenon into account. As knocking events result from auto-ignitions, the basis of a knock model is the accurate modeling of the latter. For this, the introduced 0D/1D knock model calculates the Livengood-Wu integral to estimate the state of the pre-reactions of the unburnt mixture and considers the two-stage auto-ignition of gasoline fuels, which occurs at specific boundary conditions. The model presented in this publication is validated against measurement data of a single cylinder engine. For this purpose, more than 12 000 knocking working cycles are investigated, covering extensively varied operating conditions for a wide-ranging validation.
Technical Paper

Quantitative 2D LIF Measurements of Air/Fuel Ratios During the Intake Stroke in a Transparent SI Engine

1992-10-01
922320
The fluorescence characteristics of different carbonyl compounds were investigated in a pressurized bomb using an excimer laser (308 nm) for excitation. The partial pressure of the carbonyl compounds and air was varied between 0 - saturation pressure and 0 - 5 bar, respectively. The fluorescence signal of different ketones increased almost linearly with vapour pressure. It was found to be almost independent of air pressure indicating only a weak quenching influence of oxygen. Ethylmethylketone (EMK) has a boiling temperature and vapour pressure similar to gasoline. Therefore, the applicability of EMK for measuring 2-D fuel distributions in a combustion chamber was tested in a transparent SI square piston engine. EMK was injected into the intake manifold by a conventional injector for studying the fuel/air mixing during the intake and compression stroke at 1.000 rpm. From the 2-D fluorescence signals 2-D air/fuel ratios were calculated using calibration data from bomb experiments.
Technical Paper

Quantitative Time Resolved 2-D Fuel-Air Ratio Measurements in a Hydrogen Direct Injection SI Engine Using Spontaneous Raman Scattering

1996-05-01
961101
A two-dimensional technique for the quantitative determination of the fuel-air ratio in hydrogen fuelled engines has been developed. The technique is based on the spontaneous Raman scattering of the hydrogen molecules (Stokes Q-branch) and the simultaneous measurement of the pressure inside the combustion chamber. From these data the local partial pressure of the hydrogen and, therefore, the fuel-air ratio can be calculated. This method was applied in a single cylinder direct injection research engine in order to prove the applicability of this technique under real engine conditions. The measurements inside the side chamber of the engine show a fast mixing process of the compressed air and the injected hydrogen (6 MPa injection pressure) independent of the injection timing.
Journal Article

Some Useful Additions to Calculate the Wall Heat Losses in Real Cycle Simulations

2012-04-16
2012-01-0673
More than 20 years after the first presentation of the heat transfer equation according to Bargende [1,2], it is time to introduce some useful additions and enhancements, with respect to new and advanced combustion principles like diesel- and gasoline- homogeneous charge compression ignition (HCCI). In the existing heat transfer equation according to Bargende the calculation of the actual combustion chamber surface area is formulated in accordance with the work of Hohenberg. Hohenberg found experimentally that in the piston top land only about 20-30% of the wall heat flux values from the combustion chamber are transferred to the liner and piston wall. Hohenberg explained this phenomenon that is caused by lower gas temperature and convection level in charge within the piston top land volume. The formulation just adds the existing piston top land surface area multiplied by a specified factor to the surface of the combustion chamber.
Technical Paper

The Isochoric Engine

2020-04-14
2020-01-0796
For the gasoline engine, the isochoric process is the ideal limit of the ideal processes. During the project, a combustion engine with real isochoric boundary conditions is built. A “resting time” of the piston for several degrees crank angle in the top dead center (TDC) can be realized with a special crank drive. This crank drive consists of two crankshafts with different strokes, which are combined. The two crankshafts rotate with a ratio of two to one in opposite directions. The total stroke corresponds to the amount of the first crankshaft, so it is possible to investigate different strokes of the second crankshaft in the same crankcase. Different “resting times” can be achieved by different strokes of the second crankshaft. A specific combination of both crankshafts make a stroke possible which corresponds to that of a conventional combustion engine.
Technical Paper

The Quantification of Laser-Induced Incandescence (LII) for Planar Time Resolved Measurements of the Soot Volume Fraction in a Combusting Diesel Jet

1996-05-01
961200
Quantitative Laser-Induced Incandescence (LII) has been applied to investigate the soot formation in a combusting Diesel jet for various conditions. For the quantification of the LII signal the local soot volume fraction of a diffusion flame burner was measured using laser beam extinction. These data were used for the calibration of the LII signal. The investigation of the soot formation in a combusting Diesel jet was performed in a high pressure, high temperature combustion chamber with optical access. A wide range of pressure (up to 10 MPa) and temperature (up to 1,500 K) conditions could be covered using a hydrogen precombustion, which is initiated inside the chamber before fuel injection. The influence of different gas atmospheres have been investigated by varying the gas composition (H2, O2 and N2) inside the chamber.
Technical Paper

Three-Dimensional Simulation of the Piston Group

2000-03-06
2000-01-1239
For basic research on the piston group a new simulation technique is developed using the contact algorithm of a commercial FE-code (MARC). Several improvements were made in order to adapt the MARC solver to the problem of sliding and dynamic contact. The first computations, a real transient analysis simulating the piston group, of both a two-stroke engine and a modern direct injected four-stroke Diesel engine for passenger cars, show that the new method is able to calculate the movements, velocities and accelerations of the piston. The quality of the results is mainly influenced by the hydrodynamic effects.
Technical Paper

Valve Flow Coefficients under Engine Operation Conditions: Piston Influence and Flow Pulsation

2019-09-09
2019-24-0003
Engine valve flow coefficients are used to describe the flow throughput performance of engine valve/port designs, and to model gas exchange in 0D/1D engine simulation. Valve flow coefficients are normally determined at a stationary flow test bench, separately for intake and exhaust side, in the absence of the piston. However, engine operation differs from this setup; i. a. the piston might interact with valve flow around scavenging top dead center, and instead of steady boundary conditions, valve flow is nearly always subjected to pressure pulsations, due to pressure wave reflections within the gas exchange ports. In this work the influences of piston position and flow pulsation on valve flow coefficients are investigated for different SI engine geometries by means of 3D CFD and measurements at an enhanced flow test bench.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Technical Paper

Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine

2017-09-04
2017-24-0016
The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
X