Refine Your Search

Topic

Search Results

Technical Paper

A Novel Approach for Design and Optimization of Automotive Aluminum Cross-Car Beam Assemblies

2015-04-14
2015-01-1370
Nowadays, moving toward more lightweight designs is the key goal of all major automotive industries, and they are always looking for more mass saving replacements. In this study, a new methodology for the design and optimization of cross-car beam (CCB) assemblies is proposed to obtain a more lightweight aluminum design as a substitution for the steel counterpart considering targeted performances. For this purpose, first, topology optimization on a solid aluminum geometry encompassing the entire design space should be carried out to obtain the element density distribution within the model. Reinforcing locations with high element density and eliminating those with density lower than the threshold value result in the conceptual design of the CCB. To attain the final conceptual design, the process of topology optimization and removal of unnecessary elements should be addressed in several steps.
Technical Paper

A Phenomenological Model for Soot Formation and Oxidation in Direct-Injection Diesel Engines

1995-10-01
952428
The concentration of carbonaceous particulate matter in the exhaust of diesel engines depends on the rates of formation and oxidation of soot in the combustion chamber. Soot forms early in the combustion process when local fuel-rich areas exist, whereas soot oxidation occurs later when more air is entrained into the fuel spray. Based on this understanding, a phenomenological combustion model is established. In the model, the cylinder volume is divided into four zones: a rich fuel spray core, a premixed-burning/burned gas zone, a mixing controlled burning zone and a lean air zone. Soot formation takes place in the mixing controlled burning zone where the local C/O ratio is above the critical value. Soot oxidation occurs in the premixed-burning/burned gas zone as air is entrained. By using a quasi-global chemical reaction scheme, the oxidation of soot particles by different species can be investigated.
Technical Paper

Accurate Measurement of PVT Data for PP/Gas and TPO/Gas Mixtures

2006-04-03
2006-01-0506
Foaming of a thermoplastic polyolefin (TPO) is gaining interests because of its superior mechanical properties of foamed automotive parts, such as lightweight and high performance to weight ratio, etc. In this context, understanding of the thermophysical properties of PP/gas and TPO/gas mixtures is critically important. This paper will present the newly developed experimental technique to accurately measure the swelling of PP and TPO due to gas dissolution at elevated temperatures and pressures. Our technique measures the geometry of the pendent drop accurately from the captured images to obtain the volume swelling data. It determines the boundary location of the polymer/gas sample accurately by magnifying the sample drop locally along its edge before capturing the image. The automated high-precision XY stage is chosen as the platform to control the motion of the CCD camera.
Technical Paper

Cell Nucleation and Growth Study of PP Foaming with CO2 in a Batch-Simulation System

2006-04-03
2006-01-0507
TPO is being used to make automotive parts for its number of advantages: i) low temperature flexibility and ductility, ii) excellent impact/stiffness/flow balance, iii) excellent weatherability, and iv) free-flowing pellet form for easy processing, storage, and handling. However, by foaming TPO, due to its higher rigidity-to-weigh ratio, it would offer additional advantages over the solid counterparts in terms of reduced weight, reduced material cost, and decreased fuel usage without compromising their performance. Since a major component in TPO is polypropylene (PP), understanding PP foaming behaviours is an important step towards understanding TPO foaming. For foam materials, cell density and cell size are two significant parameters that affect their material properties. In this research, we observed the cell nucleation and initial growth behaviours of PP foams blown with CO2 under various experimental conditions in a batch foaming simulation system.
Technical Paper

Durable Icephobic and Erosion Resistant Coatings Based on Quasicrystals

2023-06-15
2023-01-1455
Quasicrystalline (QC) coatings were evaluated as leading-edge protection materials for rotor craft blades. The QC coatings were deposited using high velocity oxy-fuel thermal spray and predominantly Al-based compositions. Ice adhesion, interfacial toughness with ice, wettability, topography, and durability were assessed. QC-coated sand-blasted carbon steel exhibited better performance in terms of low surface roughness (Sa ~ 0.2 μm), liquid repellency (water contact angles: θadv ~85°, θrec ~23°), and better substrate adhesion compared to stainless steel substrates. To enhance coating performance, QC-coated sand-blasted carbon steel was further exposed to grinding and polishing, followed by measuring surface roughness, wettability, and ice adhesion strength. This reduced the surface roughness of the QC coating by 75%, resulting in lower ice adhesion strengths similar to previously reported values (~400 kPa).
Technical Paper

Effect of CO2 Content on Foaming Behavior of Recyclable High-Melt-Strength PP

2006-04-03
2006-01-0336
This paper presents an experimental study on the foaming behavior of recyclable high-melt-strength (HMS) branched polypropylene (PP) with CO2 as a blowing agent. The foamability of branched HMS PP has been evaluated using a tandem foaming extruder system. The effects of CO2 and nucleating agent contents on the final foam morphology have been thoroughly investigated. The low density (i.e., 12~14 fold), fine-celled (i.e., 107–109 cells/cm3) PP foams were successfully produced using a small amount of talc (i.e., 0.8 wt%) and 5 wt% CO2.
Technical Paper

Effect of Fungal Modification on Fiber-Matrix Adhesion in Natural Fiber Reinforced Polymer Composites

2006-04-03
2006-01-0006
Natural fiber reinforced polymer composites are beginning to find their way into the commercial automotive market. But, inadequate adhesion between hydrophilic natural fibers and hydrophobic matrix materials affects the performance of the resulting composites. In this study the effect of an environmental friendly fungal treatment on the adhesion characteristics of natural fibers is investigated. Firstly, changes in acid-base characteristics of the modified hemp fibers were studied using Inverse Gas Chromatography (IGC). Afterwards, composites were prepared using Resin Transfer Molding (RTM) process and the effect of modification on performance and durability of the composites was investigated.
Technical Paper

Energy Generation and Stir Zone Dimensions in Friction Stir Spot Welds

2006-04-03
2006-01-0971
Energy generation and utilization during friction stir spot welding of Al 6061-T6 and AM50 sheet materials are investigated. The dimensions of the stir zones during plunge testing are largely unchanged when the tool rotational speed increases from 1500 RPM to 3000 RPM (for a plunge rate of 1 mm/s) and when the rate of tool penetration increases from 1 mm/s to 10 mm/s (for a tool rotational speed of 3000 RPM). The energy resulting from tool rotation is also unaffected when higher tool rotational speeds are applied. The rotating pin accounts for around 70% and 66% of the energy generated when 6.3 mm thick Al 6061-T6 and AM50 sheet materials are spot welded without the application of a dwell period. In direct contrast, the contribution made by the tool shoulder increases to around 48% (Al 6061-T6) and to 65% (AM50) when a four second long dwell period is incorporated during spot welding of 6.3 mm thick sheets.
Technical Paper

Eutectic Segregation and Cracking in AZ91 Friction Stir Spot Welds

2007-04-16
2007-01-1700
Friction stir spot welding of Mg-alloy AZ91 is investigated. The temperature cycles within the stir zone and in the TMAZ region are examined using thermocouples, which are located within the tool itself and also by locating thermocouples in drilled holes at specific locations relative to the bottom of the tool shoulder and the periphery of the rotating pin. The measured temperatures in the stir zone range from 437°C to 460°C (0.98Ts, where Ts is the solidus temperature in degrees Kelvin) in AZ91 spot welds produced using plunge rates from 2.5 and 25 mm/s. The thermal cycle within the stir zone formed during AZ91 spot welding could not be measured by locating thermocouples within the workpiece in drilled holes adjacent to the periphery of the rotating pin.
Technical Paper

Foamability of Thermoplastic Vulcanizates (TPVs) with Various Physical Blowing Agents (PBAs)

2006-04-03
2006-01-0972
Thermoplastic Vulcanizate (TPV) is a special class of Thermoplastic Elastomers (TPEs) made of a rubber/plastic polymer mixture in which the rubber phase is highly vulcanized. It is prepared by melt mixing a thermoplastic with an elastomer and by in-situ crosslinking of the rubber phase. Currently, TPV is replacing EPDM rubber dramatically because of the impressive advantages for automotive sealing applications. Some of the advantages of TPV compared to that of EPDM rubber are good gloss, recyclability, improved colorability, shorter cycle time and design flexibility. The development of TPV foaming technology is to fulfill the requirement of achieving lower cost, lighter weight and better fuel economy. Foaming of TPV has not been investigated extensively.
Technical Paper

Foaming Behaviors of PP/Clay Nanocomposites

2006-04-03
2006-01-0505
This research investigates the foaming behaviors of polypropylene (PP) and PP/clay nanocomposites blown with supercritical CO2. In this context, special attention is paid to the effects of varied clay content on the foamed structures. First, a master batch of nanocomposites with 1% and 5% clay are prepared; the nanocomposites are then characterized using X-Ray Diffraction (XRD) prior to and after their subjection to the foaming process. Subsequently, foaming experiments are conducted using supercritical CO2 as a blowing agent. The cell nucleation and expansion behaviors of the PP-based nanocomposite foams are studied at various clay contents and die temperatures. Finally, the effects of the clay content on the cell morphology, the cell density, and the expansion ratio of the PP/clay nanocomposite foams are identified.
Technical Paper

Foaming Visualization of Thermoplastic Polyolefin (TPO) Blends with N2

2007-04-16
2007-01-0572
Polymers are often blended to create compounds with new or enhanced properties in order to compensate for an individual polymer's weakness or lack of inherent properties. In the field of polymer foaming, polymer blends are also used to generate fine-cell structures via heterogeneous nucleation. Recently, an interest in physical blowing agents, such CO2 and N2, has increased because of their low impact on the environment. It has thus become additionally important to pursue research on the foaming of polymer blends employing these particular physical blowing agents in an effort to keep up with the demand for environmentally friendly products. In this study, thermoplastic polyolefin (TPO) blends were prepared with polypropylene (PP) and a metallocene-based polyolefin elastomer (POE) using twin-screw extruders and a batch mixer.
Technical Paper

Fuel Effects on Particulate Matter Emissions Variability from a Gasoline Direct Injection Engine

2018-04-03
2018-01-0355
Particulate matter emissions from gasoline direct injection engines are a concern due to the health effects associated with ultrafine particles. This experimental study investigated sources of particulate matter emissions variability observed in previous tests and also examined the effect of ethanol content in gasoline on particle number (PN) concentrations and particle mass (PM) emissions. FTIR measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol correlated positively with emitted PN concentrations, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility respectively.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Technical Paper

High Performance Natural Fiber Thermoplastics for Automotive Interior Parts

2004-03-08
2004-01-0729
Natural fiber mat (NMT) composites are ecologically and energetically beneficial because of their light-weight at high fibre content. This study demonstrated that the use of loose natural fibre in NMT process could lead to tremendous improvement in the shock absorption properties. It is also concluded that in NMT process fibre length above the critical length of fibre hardly affects the mechanical strength. The process is relatively easy one-step molding technique to provide large dimensions. The process also demonstrated promise in reducing the cost of the composite parts by minimizing/eliminating the use of natural fibre nonwoven mat and replacement of glass fibre.
Technical Paper

Impact of Powertrain Type on Potential Life Cycle Greenhouse Gas Emission Reductions from a Real World Lightweight Glider

2017-03-28
2017-01-1274
This study investigates the life cycle greenhouse gas (GHG) emissions of a set of vehicles using two real-world gliders (vehicles without powertrains or batteries); a steel-intensive 2013 Ford Fusion glider and a multi material lightweight vehicle (MMLV) glider that utilizes significantly more aluminum and carbon fiber. These gliders are used to develop lightweight and conventional models of internal combustion engine vehicles (ICV), hybrid electric vehicles (HEV), and battery electric vehicles (BEV). Our results show that the MMLV glider can reduce life cycle GHG emissions despite its use of lightweight materials, which can be carbon intensive to produce, because the glider enables a decrease in fuel (production and use) cycle emissions. However, the fuel savings, and thus life cycle GHG emission reductions, differ substantially depending on powertrain type. Compared to ICVs, the high efficiency of HEVs decreases the potential fuel savings.
Technical Paper

Injection Molded Hybrid Natural Fibre - Thermoplastic Composites for Automotive Interior Parts

2004-03-08
2004-01-0014
Eco-efficient and cost effective natural fibre - thermoplastic composites have gained attention to a great extent in the automotive industry. Most of the OEM specifications for automotive interior parts, for example, instrument panels, recommend the composite should have a minimum flexural modulus of 1900 MPa, a notched Impact strength greater than 150 J/m at room temperature and a melt flow index of 5 g/10min and above [1, 2 and 3]. The objective of this work was to develop a high performance hybrid composite by injection molding process of the composites made from natural fibre in combination with glass fibre or calcium carbonate in a thermoplastic matrix to meet the specifications required for automotive interior parts applications. Mechanical properties, such as tensile and flexural strengths and moduli of the composites prepared, were found to be highly promising.
Technical Paper

Measurement of Gas Solubility for PP/Blowing-Agent Mixtures

2005-04-11
2005-01-1671
Determination of the solubility of a blowing agent, i.e. supercritical CO2 or N2, in polypropylene (PP) is crucial for achieving high-quality PP and thermoplastic polyolefin (TPO) foams. A magnetic suspension balance (MSB) was employed in the experiments to measure the apparent solubility, while the swollen volume predicted by the Sanchez-Lacombe (SL) equation of state (EOS) and Simha-Somcynsky (SS) EOS was used to account for the buoyancy effect. The gas solubilities for both linear and branched PP were calculated and the effects of branching on the swollen volume and gas solubility were discussed.
Technical Paper

Measurement of N2 Solubility in Polypropylene and Ethene/Octene Copolymer

2006-04-03
2006-01-0504
Determination of the solubility of a blowing agent, i.e. supercritical N2, in polypropylene (PP) and elastomer material is crucial for achieving high-quality thermoplastic polyolefin (TPO) foams in automotive industry. A magnetic suspension balance (MSB) was employed in the experiments to measure the apparent solubility, while the swollen volume predicted by the Sanchez-Lacombe (SL) equation of state (EOS) was used to account for the buoyancy effect. The volume swelling of the polymer/gas mixture and the gas solubilities for both PP and polyolefin elastomer were discussed.
Technical Paper

Measurement of Swelling for PP/Gas Mixtures

2005-04-11
2005-01-1672
Foaming of thermoplastic polyolefins (TPO) and thermoplastic elastomers (TPE) is gaining interest because of the lightweight and high performance to weight ratio of foamed automotive parts. Since foaming will occur mainly in the PP matrix in these PP-based automotive materials, understanding of the thermophysical properties of PP/gas mixtures is critically important. This paper will present a proposed methodology for measuring the swelling of polymer/gas mixtures. The preliminary experimental measurement of PP/N2 swelling at elevated temperatures and pressures will be discussed.
X