Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Comparing the Whole Body Vibration Exposures across Three Truck Seats

2017-06-05
2017-01-1836
Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
Technical Paper

Comparison of Measurement Methods for Evaluating Displacement of Commercial Vehicle Seats

2019-06-05
2019-01-1481
Measuring the displacements in vehicle seat suspensions and the displacements the seat has to absorb may assist vehicle seat designers in better designing seats to absorb vibrations. Low frequency seat displacement is important in seat design to identify end-stop events and higher frequency shorter displacements are also important since seat components can be optimized to absorb these smaller displacements. Displacements can be directly measured with special instruments, but it would be less complicated if simple, compact accelerometers could be used to measure the seat displacements. This paper compares accelerometer-derived displacement measurements to known displacements derived from sinusoidal physics and field measured random displacements measured with potentiometers. Using known, controlled sinusoidal displacements, three lab-based experiments were conducted to determine how well accelerometers, using double integration, could measure displacements.
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Quasi-Isothermal Expansion Engines for Liquid Nitrogen Automotive Propulsion

1997-08-06
972649
An automotive propulsion concept is presented which utilizes liquid nitrogen as the working fluid for an open Rankine cycle. Ambient heat exchangers are used to power an engine that is configured to maximize heat transfer during the expansion stroke. If sufficient heat input during the expansion process can be realized then this cryogenic propulsive system would provide greater automotive ranges and lower operating costs than those of electric vehicles currently being considered for mass production. The feasibility of meeting this engineering challenge has been evaluated and several means of achieving quasi-isothermal expansion are discussed.
Technical Paper

The Effect of Geometric Field of View and Tunnel Design for Perspective Flight-Path Displays

1992-07-01
921131
Previous studies have shown that use of flight-path displays may lead to increased situational awareness during final approach and landing. However, there are a number of research issues which remain to be investigated concerning the optimum design of a perspective flight-path display. The purpose of this paper is to report the results of a study which investigated the relationship between the geometric field of view, number of tunnels in the display, and flight-path complexity on the subject's ability to fly a computer-simulated aircraft during final approach. Implications of the results for the design of perspective flight-path displays are discussed.
X