Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Controls Development and Vehicle Refinement for a 99% Showroom Ready Parallel Through the Road Plug-In Hybrid Electric

2014-10-13
2014-01-2906
This paper details the control system development process for the University of Washington (UW) EcoCAR 2 team over the three years of the competition. Particular emphasis is placed upon the control system development and validation process executed during Year 3 of the competition in an effort to meet Vehicle Technical Specifications (VTS) established and refined by the team. The EcoCAR 2 competition challenges 15 universities across North America to reduce the environmental impact of a 2013 Chevrolet Malibu without compromising consumer acceptability. The project takes place over a three year design cycle, where teams select a hybrid architecture and fuel choice before defining a set of VTS goals for the vehicle. These VTS are selected based on the desired static and dynamic performance targets to balance fuel consumption and emissions with consumer acceptability requirements.
Technical Paper

Parameter Estimation of the Human Ankle in the Transverse Plane during Straight Walking

2007-06-12
2007-01-2486
In order to reduce painful and injurious shear stresses for lower limb amputees, prosthetic ankle joints need to provide torsional control in the transverse plane. This paper attempts to characterize biological ankle function in the transverse plane with simple mechanical elements to assist in the design of a biomimetic prosthetic ankle joint. Motion capture data was collected from ten subjects walking in a straight trajectory to model four states of stance phase. Passive elements were chosen to model the ankle in each state. The ankle was observed to act as a quadratic torsional spring in State 1 and as linear torsional springs in States 2, 3 and 4. The results of this study should assist with the mechanical design and control of a biomimetic torsional prosthesis by suggesting a finite state control system and by providing the stiffness coefficients to be controlled for straight walking.
Technical Paper

Structuring a Hybrid Vehicle Supervisory Control System Simulink Model for Simpler Version Control with Multiple Software Developers

2014-04-01
2014-01-1923
This paper details the development process and model architecture used in the University of Washington's EcoCAR 2 hybrid supervisory controller. The EcoCAR 2 project challenges 15 universities across North America to create a hybrid vehicle that most effectively minimizes emissions and fuel consumption while still maintaining consumer acceptability. The supervisory controller for the University of Washington was designed to distribute torque to the various electric and combustion drive systems on a parallel though the road plug-in hybrid electric vehicle using Simulink and Stateflow. The graphical interface of Simulink offers some distinct advantages over text-based programming languages. However, there are also significant challenges posed by the software, particularly when several controls engineers are working in parallel on a large model with some type of version control.
X