Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Advances in Real-Time Monitoring of Acoustic Emissions

1997-06-03
972254
We are developing a flexible and general methodology for real-time monitoring of acoustic emissions in machining applications. The goal of this work is to develop an approach to in-process monitoring which allows continuous assessment of tool wear and early warning of process exceptions. The nature of metal removal processes creates short-lived vibrations that carry information about the condition of the cutting tool and quality of cut. We wish to extract and represent these transient events without loss of important spectral structure. Other challenges include the need for system training data selection in the absence of expert labeled data, the modeling of short-term time evolution, and efficient real-time operation on an inexpensive computing platform.
Technical Paper

Analyses of Low-Frequency Motorcycle Noise Under Both Steady-State and Transient Operating Conditions

2021-08-31
2021-01-1108
This paper presents experimental investigations of diagnosing and analyzing the low-frequency, low- SNR (Signal to Noise Ratio) noise sources of three motorcycles using a hybrid technology that consists of a passive SODAR (Sonic Detection And Ranging) and modified HELS (Helmholtz Equation Least Squares) methods. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range that is consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, and sound transmission paths through arbitrarily shaped vibrating structures.
Technical Paper

Comparing the Whole Body Vibration Exposures across Three Truck Seats

2017-06-05
2017-01-1836
Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
Technical Paper

Determining Vibro-Acoustic Characteristics and Structural Damping of an Elastic Monolithic Panel

2019-06-05
2019-01-1538
Evaluations of the dynamic and acoustic responses of panels, partitions, and walls are of concern across many industries, from building home appliances, planning meeting rooms, to designing airplanes and passenger cars. Over the past few decades, search efforts for developing new methodologies and technologies to enable NVH engineers to acquire and correlate dynamically the relationship between input excitations and vibro-acoustic responses of arbitrary-shaped panels has grown exponentially. The application of a particular methodology or technology to the evaluation of a specific structure depends intimately on the goals and objectives of the NVH engineers and industries.
Technical Paper

Development Of A Practical Multi-disciplinary Design Optimization (MDO) Algorithm For Vehicle Body Design

2016-04-05
2016-01-1537
The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
Technical Paper

Diagnostics of Engine Noise During Run-up Using HELS Based Nearfield Acoustical Holography

2005-05-16
2005-01-2505
This paper describes the diagnostics of noise sources and characteristics of a full-size gasoline engine during its run-up using Helmholtz Equation Least Squares (HELS) method based nearfield acoustical holography (NAH). The acoustic pressures are measured using an array of 56 microphones conformal to the contours of engine surfaces at very close range. Measurements are collected near the oil pan, front and intake sides. The data thus collected are taken as input to HELS program, and the acoustic pressure mappings on the oil pan, front and intake surfaces are calculated. These reconstructed acoustic quantities clearly demonstrate the “hot spots” of sound pressures generated by this gasoline engine during its run-up and under a constant speed condition. These acoustic pressure mappings together with order-tracking spectrograms allow for identification of the peak amplitudes of acoustic pressures on a targeted surface as a function of the frequency and engine rpm.
Technical Paper

Effects of Sinusoidal Whole Body Vibration Frequency on Drivers' Muscle Responses

2015-04-14
2015-01-1396
Low back pain has a higher prevalence among drivers who have long term history of vehicle operations. Vehicle vibration has been considered to contribute to the onset of low back pain. However, the fundamental mechanism that relates vibration to low back pain is still not clear. Little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to determine the vibration frequency that causes the increase of muscle activity that can lead to muscle fatigue and low back pain. This study investigated the effects of various vibration frequencies on the lumbar and thoracic paraspinal muscle responses among 11 seated volunteers exposed to sinusoidal whole body vibration varying from 4Hz to 30Hz at 0.4 g of acceleration. The accelerations of the seat and the pelvis were recorded during various frequency of vibrations. Muscle activity was measured using electromyography (EMG).
Technical Paper

Identification of Low-Frequency/Low SNR Automobile Noise Sources

2021-08-31
2021-01-1062
This paper presents experimental investigations of determining and analyzing low-frequency, low-SNR (Signal to Noise Ratio) noise sources of an automobile by using a new technology known as Sound Viewer. Such a task is typically very difficult to do especially at low or even negative SNR. The underlying principles behind the Sound Viewer technology consists of a passive SODAR (Sonic Detection And Ranging) and HELS (Helmholtz Equation Least Squares) method. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, etc.
Technical Paper

Lattice Brake Disc Instability Analysis Using Transient Complex Eigenvalue Method in Terms of Excitation Applied to the Pad

2018-04-03
2018-01-0091
This paper describes an integrated approach to the analysis of brake squeal with newly lattice brake disc design. The procedure adopted to define the lattice properties by considering the periodicity cell of lattice plates, present equations of motion and modes response of a periodic lattice disc in principal coordinates on the rotating disc which excited by distributed axial load. The non-linear contact problem is carried out based on a typical passenger car brake for vanned and lattice brake disc types as it undergoes a partial simulation of the SAE J2521 drag braking noise test. The experimental modal analysis (EMA) with impact hammer test is used to obtain the brake rotor modal properties and validated finite element Free- Free State and stability analysis. The fugitive nature of brake squeal is analyzed through the complex eigenvalue extraction technique to define dynamic instability.
Technical Paper

Measurement and Analysis of Rotor In-plane Mode Induced Disc Brake Squeal and Beyond

2004-10-10
2004-01-2798
This paper provides measurement and analysis on rotor in-plane mode induced squeal. Methodology is presented to simultaneously acquire both temporal and spatial squeal operational deflection shapes (ODS). Rotor accelerations both in the in-plane and out-of-plane directions were measured during squeal along with rotor's normal ODS using a laser vibrometer. Modal measurement and analysis of the rotor and pad in the in-plane and out-of-plane directions were conducted as installed in system condition. The test results indicating rotor modal coupling in the in-plane are provided, and out-of-plane directions, and conclusions on in-plane mode induced squeal are proposed. In addition, the countermeasure for squeal reduction is discussed.
Technical Paper

Modeling the Vibrations of and Energy Distributions in Car Body Structures

2011-05-17
2011-01-1573
A general numerical method, the so-called Fourier Spectral Element Method (FSEM), is described for the dynamic analysis of complex systems such as car body structures. In this method, a complex dynamic system is viewed as an assembly of a number of fundamental structural components such as beams, plates, and shells. Over each structural component, the basic solution variables (typically, the displacements) are sought as a continuous function in the form of an improved Fourier series expansion which is mathematically guaranteed to converge absolutely and uniformly over the solution domain of interest. Accordingly, the Fourier coefficients are considered as the generalized coordinates and determined using the powerful Rayleigh-Ritz method. Since this method does not involve any assumption or an introduction of any artificial model parameters, it is broadly applicable to the whole frequency range which is usually divided into low, mid, and high frequency regions.
Technical Paper

Noise Analysis of Automotive Alternators

1999-05-17
1999-01-1712
An extensive experimental study of noise generating mechanisms of two production models of automotive alternators is presented. It was established that aerodynamic noise (generated by cooling fans) is dominating at high speeds (above 3,000 rpm), while electromagnetic noise is the most intensive at low rpm. Two directions of noise reduction are proposed and validated: reduction of noise levels generated by alternators to be achieved by using axial flow fans for cooling instead of presently used bladed discs, and radical reduction of operating speed of alternators by using variable transmission ratio accessory drives.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

2012-04-16
2012-01-0098
Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Technical Paper

Reciprocating Engine Piston Secondary Motion - Literature Review

2008-04-14
2008-01-1045
The piston secondary motion is an important phenomenon in internal combustion (IC) engine. It occurs due to the piston transverse and rotational motion during piston reciprocating motion. The piston secondary motion results in engine friction and engine noise. There has been lot of research activities going on in piston secondary motion using both analytical models and experimental studies. These studies are aimed at reducing the engine friction as well as the noise generated due to piston secondary motion. The aim of this paper is to compile the research actives carried out on the piston secondary motion and discuss the possible research opportunities for reducing the IC engine piston secondary motion.
Journal Article

Shell Elements Based Parametric Modeling Method in Frame Robust Design and Optimization

2011-04-12
2011-01-0508
Shell Elements based Parametric Frame Modeling is a powerful CAE tool, which can generate robust frame design concept optimized for NVH and durability quickly when combined with Taguchi Design of Experiments. The scalability of this modeling method includes cross members length/location/section/shape, frame rail segments length/section and kick in/out/up/down angle, and access hole location & size. In the example of the D. O. E. study, more than fifteen parameters were identified and analyzed for frequency and weight. The upper and lower bounds were set for each design parameter based on package and manufacturing constraints. Sixteen Finite Element frame were generated by parametrically updating the base model, which shows this modeling method is comparatively convenient. Sensitivity of these sixteen parameters to the frequency and weight was summarized through statics, so the favorable design alternative can be achieved with the major parameters' combination.
Technical Paper

Suppression of Self-Excited Vibration by Dither Technique with Potential Application to Reduce Brake Squeal

2004-10-10
2004-01-2790
Disc brake squeal is a manifestation of the friction-induced self-excited instability of the brake system. One of known techniques in suppressing dynamic instabilities in nonlinear systems is by applying dither. The focus of this paper is to examine, through numerical examples, the feasibility and effects of dither on nonlinear systems as a means of quenching large-amplitude limit cycles. In particular, various ways of introducing the dither, either via modifications of the system characteristics or as external excitation, are explored. The investigation is extended to a disc brake system using finite elements simulations. Numerical results show that large-amplitude vibrations can be suppressed by dither and careful tuning of the amplitude and frequency of the dither can result in an effective quenching. The potential application of this technique to disc brake squeal control is also discussed.
Technical Paper

The Determination of Response Characteristics of the Head with Emphasis on Mechanical Impedance Techniques

1967-02-01
670911
Certain physical characteristics such as apparent mass and stiffness influence the dynamic response of the head and thereby the degree of trauma suffered from impact with another body. These characteristics are a function of frequency and can be determined by mechanical impedance measurement techniques. A force generator was attached directly to the skull and the force input and resulting motion at the point of attachment were measured respectively by a force and acceleration transducer. The magnitude as well as phase angle between these two vectors were measured over the frequency range from 5 to 5,000 Hz. A plot of the ratio of force and acceleration vs. frequency and phase angle vs. frequency on a nomograph reveal that both the apparent mass and stiffness of the head vary markedly from static values, and with location.
Technical Paper

The Effect of Vibration on the Shipment of Palletized Products

1995-11-01
952640
Today's competitive food and produce markets require better understanding of the design of packaged, palletized products in order to minimize product damage during shipping, maintain quality, control costs, and address promotional and environmental concerns. To further define important design parameters, the effects of shipment vibration on palletized products were measured. The premise of this study was that the natural frequencies of the palletized product should be different from those of the vehicle in order to decrease resonant behavior that may lead to packaging failure. The study was conducted in two stages. First, the natural frequencies of the product itself were examined, then the natural frequencies of fully loaded truck trailers were investigated. A description of analytical and experimental methods for evaluating packaging design and suggestions for ways to avoid resonant excitation are presented.
Technical Paper

Visualizing Automobile Disk Brake Squeals and Corresponding Out-of-Plane Vibration Modes

2005-05-16
2005-01-2319
Automobile disk brake squeal has always been one of the major customer complaints because of its extremely unpleasant, very high pitch and intense sound. Currently, diagnostics of vehicle brake squeals are conducted using a scanning laser vibrometer synchronized with squeals. This process is time consuming, especially when there is a hard-to-reach area for a laser beam to shine or when squeals have multiple frequencies for which filtering must be used so that individual out-of-plane vibration modes can be obtained. In this paper, a different method known as Helmholtz equation least squares (HELS) method based nearfield acoustical holography (NAH) is used to reconstruct all acoustic quantities, including the acoustic pressure, normal components of the surface velocity and acoustic intensity. In particular, the locations from which squeal is originated are identified and the out-of-plane vibration modes that are responsible for squeal sounds are established.
X