Refine Your Search

Topic

Author

Search Results

Technical Paper

A 1D Real-Time Engine Manifold Gas Dynamics Model Using Orthogonal Collocation Coupled with the Method of Characteristics

2019-04-02
2019-01-0190
In this paper, a new solution method is presented to study the effect of wave propagation in engine manifolds, which includes solving one-dimensional models for compressible flow of air. Velocity, pressure, and density profiles are found by solving a system of non-linear Partial Differential Equations (PDEs) in space and time derived from Euler’s equations. The 1D model includes frictional losses, area change, and heat transfer. The solution is traditionally found by utilizing the Method of Characteristics and applying finite difference solutions to the resulting system of ordinary differential equations (ODEs) over a discretized grid. In this work, orthogonal collocation is used to solve the system of ODEs that is defined along the characteristic curves. Orthogonal polynomials are utilized to approximate velocity, pressure, sound speed, and the characteristic curves along which the system of PDEs reduce to a system of ODEs.
Journal Article

A New Adaptive Controller for Performance Improvement of Automotive Suspension Systems with MR Dampers

2014-04-01
2014-01-0052
A control algorithm is developed for active/semi-active suspensions which can provide more comfort and better handling simultaneously. A weighting parameter is tuned online which is derived from two components - slow and fast adaptation to assign weights to comfort and handling. After establishing through simulations that the proposed adaptive control algorithm can demonstrate a performance better than some controllers in prior-art, it is implemented on an actual vehicle (Cadillac STS) which is equipped with MR dampers and several sensors. The vehicle is tested on smooth and rough roads and over speed bumps.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

An Algorithm to Calculate Chest Deflection from 3D IR-TRACC

2016-04-05
2016-01-1522
A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
Technical Paper

An Analytical Analysis on the Cross Flow in a PEM Fuel Cell with Serpentine Channel

2008-04-14
2008-01-0314
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for PEM fuel cells since it ensures the removal of liquid water produced in a cell with excellent performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared to the case without cross flow. In this work, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the gas diffusion layer between two successive U-turns.
Technical Paper

Application of Damage Models in Bending and Hydroforming of Aluminum Alloy Tube

2004-03-08
2004-01-0835
This paper examines the application of damage models in tube bending and subsequent hydroforming of AlMg3.5Mn aluminum alloy tubes. An in-house Gurson-based damage model, incorporated within LS-DYNA, has been used for the simulations. The applied damage model contains several void nucleation and growth parameters that must be determined for each material. A simpler straight tube hydroforming process was considered first to check the damage parameters and predicted ductility. Then the model was applied to a sequence of bending and hydroforming. The damage history from pre-bending was mapped to the hydroforming stage, to allow prediction of the overall ductility. The applied forming parameters in the simulation were based on data extracted during the experimental tests. Finally, the numerical results were compared to the experimental data.
Technical Paper

Automation of Adams/Car K&C Correlation using MATLAB

2014-04-01
2014-01-0847
Physical rig testing of a vehicle is often undertaken to obtain experimental data that can be used to ensure a mathematical model is an accurate representation of the vehicle under study. Kinematics and Compliance (K&C) testing is often used for this purpose. The relationship between the hard point locations and compliance parameters, and K&C characteristics of a suspension system is complex, and so automating the process to correlate the model to the test data can make the exercise easier, faster and more accurate than hand tuning the model. In this work, such a process is developed. First, the model parameters are adjusted, next a simulation is run, before the results are read and post processed. This automation processed is used in conjunction with an optimization procedure to carry out the K&C correlation.
Technical Paper

Coatings on Resistance Welding Electrodes to Extend Life

2006-04-03
2006-01-0093
TiCP/Ni coating has been deposited onto the electrodes by electro-spark deposition to improve electrode life during resistance welding of Zn-coated steels. However, welding results revealed that molten Zn penetrates into coating through the cracks and then reacts with substrate copper alloy to form brasses. In the present work, laser treatment was performed on the TiCP/Ni coated electrodes to eliminate cracks formed in the as-deposited TiCP/Ni coating. In addition, a multi-electro-spark deposition of Ni, TiCP/Ni and Ni has also been carried out to improve coating quality. On the other hand, a TiB2 coating was also investigated. those coatings were characterized by electro-microscopy, energy-dispersive X-ray analysis, X-ray diffraction and micro-hardness tests. The results showed that cracks within the as-deposited TiCP/Ni coating could be eliminated with the use of laser treatment or a multi-layer deposition process.
Technical Paper

Comparison of Optimization Techniques for Lithium-Ion Battery Model Parameter Estimation

2014-04-01
2014-01-1851
Due to rising fuel prices and environmental concerns, Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs) have been gaining market share as fuel-efficient, environmentally friendly alternatives. Lithium-ion batteries are commonly used in EV and HEV applications because of their high power and energy densities. During controls development of HEVs and EVs, hardware-in-the-loop simulations involving real-time battery models are commonly used to simulate a battery response in place of a real battery. One physics-based model which solves in real-time is the reduced-order battery model developed by Dao et al. [1], which is based on the isothermal model by Newman [2] incorporating concentrated solution theory and porous electrode theory [3]. The battery models must be accurate for effective control; however, if the battery parameters are unknown or change due to degradation, a method for estimating the battery parameters to update the model is required.
Journal Article

Cooperative Least Square Parameter Identification by Consensus within the Network of Autonomous Vehicles

2016-04-05
2016-01-0149
In this paper, a consensus framework for cooperative parameter estimation within the vehicular network is presented. It is assumed that each vehicle is equipped with a dedicated short range communication (DSRC) device and connected to other vehicles. The improvement achieved by the consensus for parameter estimation in presence of sensor’s noise is studied, and the effects of network nodes and edges on the consensus performance is discussed. Finally, the simulation results of the introduced cooperative estimation algorithm for estimation of the unknown parameter of road condition is presented. It is shown that due to the faster dynamic of network communication, single agents’ estimation converges to the least square approximation of the unknown parameter properly.
Technical Paper

Crack Initiation and Propagation Fatigue Life Prediction for an A36 Steel Welded Plate Specimen

2019-04-02
2019-01-0538
Fatigue crack initiation and propagation models predict the fatigue life of welded "T" specimens tested by the Fatigue Design and Evaluation (FDE) Committee of SAE under constant and variable amplitude load histories. The crack propagation equations stipulated by British Standard BS-7910 have been incorporated in a material memory model for cyclic deformation. The simulations begin with the crack initiation model and show how it is used to account for cyclic mean stress relaxation and the effects of periodic overloads. After the cracks initiate the BS-7910 model is applied to predict the crack advance due to either constant or variable amplitude histories. Simulation results correspond to the experimental results with good accuracy.
Technical Paper

Crack Initiation and Propagation Predictions for ManTen and RQC-100 Steel Keyhole Notched Specimens Tested by the Fatigue Design & Evaluation Committee of SAE

2020-04-14
2020-01-0191
1 Crack initiation and propagation test data gathered during tests on Keyhole notched samples is used to evaluate a fatigue life prediction technique. Materials tested include a lower strength ManTen steel and a higher strength Boron steel, RQC-100, both tested with constant and variable amplitude histories. Initiation fatigue life is predicted using the usual method of plasticity correction at the notch followed by a Palmgren-Miner summation of damage with mean stress correction. The emphasis of the study is on simulating the crack propagation results. For that phase discretetize da/dN vs ΔK lines and thresholds for negative R ratios, are used specifically to help predict the propagation for one of the VA histories that had a significant negative mean. The open source crack propagation simulation program applies a material memory model to determine the crack advance on a reversal by reversal basis.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

Degradation Testing and Modeling of 200 Ah LiFePO4 Battery

2018-04-03
2018-01-0441
In this paper, a degradation testing of a lithium-ion battery used for an electric vehicle (EV) is performed and the capacity fade is measured over 400 cycles. For this, a 200 Ah LiFePO4 battery cell is tested under ambient temperature conditions with charge-discharge cycles at rate of 1C (constant current). Additionally, individual cell characterization is conducted using a C/25 (0.8A) charge-discharge cycle and hybrid pulse power characterization (HPPC). Later, the Thevenin battery model was constructed in MATLAB along with an empirical degradation model and validated in terms of voltage for all cycles. It is also found that the presented model closely estimated the profiles observed in the experimental data. Data collected from the experimental results showed that a capacity fade occurred over the 400 cycles and the discharge capacity at the end of 400th cycle is found to be 137.73 Ah. The error between model/experiments is found to be less than 3.5% for all cycles.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Design and Evaluation of an in-Plane Shear Test for Fracture Characterization of High Ductility Metals

2024-04-09
2024-01-2858
Fracture characterization of automotive metals under simple shear deformation is critical for the calibration of advanced fracture models employed in forming and crash simulations. In-plane shear fracture tests of high ductility materials have proved challenging since the sample edge fails first in uniaxial tension before the fracture limit in shear is reached at the center of the gage region. Although through-thickness machining is undesirable, it appears required to promote higher strains within the shear zone. The present study seeks to adapt existing in-plane shear geometries, which have otherwise been successful for many automotive materials, to have a local shear zone with a reduced thickness. It is demonstrated that a novel shear zone with a pocket resembling a “peanut” can promote shear fracture within the shear zone while reducing the risk for edge fracture. An emphasis was placed upon machinability and surface quality for the design of the pocket in the shear zone.
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Technical Paper

Development of a High-Fidelity Series-Hybrid Electric Vehicle Model using a Mathematics-Based Approach

2011-05-17
2011-39-7201
The recent increase in oil prices and environmental concerns have attracted various research efforts on hybrid electric vehicles (HEVs) which provide promising alternatives to conventional engine-powered vehicles with better fuel economy and fewer emissions. To speed up the design and prototyping processes of new HEVs, a method that automatically generates mathematics equations governing the vehicle system response in an optimized symbolic form is desirable. To achieve this goal, we employed MapleSimTM, a new physical modeling tool developed by Maplesoft Inc., to develop the multi-domain model of a series-HEV, utilizing the symbolic computing algorithms of Maple software package to generate an optimized set of governing equations. The HEV model consists of a mean-value internal combustion engine (ICE), a chemistry-based Ni-MH battery pack, and a multibody vehicle model. Simulations are then used to demonstrate the performance of the developed HEV system.
X