Refine Your Search

Topic

Author

Search Results

Technical Paper

1997 Propane Vehicle Challenge Design Strategy -University of Waterloo

1998-02-23
980491
The conversion design strategy, and emissions and performance results for a dedicated propane, vapour injected, 1995 Dodge Dakota truck are reported. Data is obtained from the University of Waterloo entry in the 1997 Propane Vehicle Challenge. A key feature of the design strategy is its focus on testing and emissions while preserving low engine speed power for drivability. Major changes to the Dakota truck included the following: installation of a custom shaped fuel tank, inclusion of a fuel temperature control module, addition of a vaporizer and a fuel delivery metering unit, installation of a custom vapour distribution manifold, addition of an equivalence ratio electronic controller, inclusion of a wide range oxygen sensor, addition of an exhaust gas recirculation cooler and installation of thermal insulation on the exhaust system. A competition provided natural gas catalyst was used.
Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

An Analytical Analysis on the Cross Flow in a PEM Fuel Cell with Serpentine Channel

2008-04-14
2008-01-0314
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for PEM fuel cells since it ensures the removal of liquid water produced in a cell with excellent performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared to the case without cross flow. In this work, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the gas diffusion layer between two successive U-turns.
Journal Article

An Efficient Lift Control Technique in Electro-hydraulic Camless Valvetrain Using Variable Speed Hydraulic Pump

2011-04-12
2011-01-0940
Significant improvement in fuel consumption, torque delivery and emission could be achieved through flexible control of the valve timings, duration and lift. In most existing electro-hydraulic variable valve actuation systems, the desired valve lift within every engine cycle is achieved by accurately controlling of the solenoid-valve opening interval; however, due to slow response time, precision control of these valves is difficult particularly during higher engine speeds. In this paper a new lift control strategy is proposed based on the hydraulic supply pressure and flow control. In this method, in order to control the peak valve lift, the hydraulic pump speed is precisely controlled using a two-input gearbox mechanism. This eliminates the need for precision control of the solenoid valves opening interval within every cycle.
Technical Paper

Control Analysis for Efficiency Optimization of a High Performance Hybrid Electric Vehicle with Both Pre and Post Transmission Motors

2016-04-05
2016-01-1253
The drive to improve and optimize hybrid vehicle performance is increasing with the growth of the market. With this market growth, the automotive industry has recognized a need to train and educate the next generation of engineers in hybrid vehicle design. The University of Waterloo Alternative Fuels Team (UWAFT), as part of the EcoCAR 3 competition, has developed a control strategy for a novel parallel-split hybrid architecture. This architecture features an engine, transmission and two electric motors; one pre-transmission motor and one post-transmission motor. The control strategy operates these powertrain components in a series, parallel, and all electric power flow, switching between these strategies to optimize the energy efficiency of the vehicle. Control strategies for these three power flows are compared through optimization of efficiencies within the powertrain.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Development of a High-Fidelity Series-Hybrid Electric Vehicle Model using a Mathematics-Based Approach

2011-05-17
2011-39-7201
The recent increase in oil prices and environmental concerns have attracted various research efforts on hybrid electric vehicles (HEVs) which provide promising alternatives to conventional engine-powered vehicles with better fuel economy and fewer emissions. To speed up the design and prototyping processes of new HEVs, a method that automatically generates mathematics equations governing the vehicle system response in an optimized symbolic form is desirable. To achieve this goal, we employed MapleSimTM, a new physical modeling tool developed by Maplesoft Inc., to develop the multi-domain model of a series-HEV, utilizing the symbolic computing algorithms of Maple software package to generate an optimized set of governing equations. The HEV model consists of a mean-value internal combustion engine (ICE), a chemistry-based Ni-MH battery pack, and a multibody vehicle model. Simulations are then used to demonstrate the performance of the developed HEV system.
Technical Paper

Dynamic Analyses of Different Concept Car Suspension System Layouts

2009-04-20
2009-01-0360
Ride performance characteristics of a road vehicle involving different suspension system layouts are investigated. The suspension layouts consist of conventional rectangular 4-wheel, novel diamond-shaped 4-wheel, triangular 3-wheel and inverse-triangular 3-wheel. A generalized full-vehicle model integrating different suspension system layouts is formulated. The fundamental suspension properties are compared in terms of bounce-, roll- and pitch-mode. The ride dynamic responses and power consumption characteristics are explored under two measured road roughness excitations and a range of vehicle speeds. The results demonstrate that the novel diamond-shaped suspension system layout could yield significantly enhanced vehicle ride performance in an energy-saving manner.
Technical Paper

Effect of Bead Finish Orientation on Friction and Galling in the Drawbead Test

1992-02-01
920632
This study was undertaken to examine the role of tool finish orientation on the drawing of zinc-coated steel sheets. Beads of average roughnesses of 0.1 μm and 0.2 μm, finished parallel to and perpendicular to sliding, were used in the drawbead test. Lubrication was provided by unblended base oils of 4.5, 30, and 285 mm2/s @ 40°C, used neat and with a boundary additive, 1% stearic acid. Three types of coated sheet (galvannealed, electrogalvanized, and hot-dip galvanized) were compared to bare AKDQ steel sheet. Results show that lubricant viscosity had the greatest effect on friction, while bead finish orientation and coating type influenced the nature of metal transfer and the galling of the strip. Mixed-film lubrication dominated with the medium and heavy lubricants, here contact area and friction were reduced with increasing lubricant viscosity.
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Fuel Cell Hybrid Control Strategy Development

2006-04-03
2006-01-0214
Supervisory control strategies for a hybrid fuel cell powertrain are developed and simulated using Simulink models and the Powertrain Systems Analysis Toolkit (PSAT). The control strategy selects the power splitting ratio between a 65kW Hydrogenics fuel cell power module and a 70kW Cobasys Nickel Metal Hydride (NiMH) battery pack. Simple control algorithms targeting a battery pack State of Charge (SOC), or maximizing the instantaneous powertrain efficiency are initially considered and analyzed. A comprehensive control strategy optimizing powertrain efficiency, vehicle performance, emissions, and long-term reliability is then developed and simulated. The simulated vehicle using the comprehensive control strategy with reliability considerations exhibits a 21% mileage improvement as compared to a simple rule-based control algorithm.
Technical Paper

Fuel Cell Hybrid Powertrain Design Approach for a 2005 Chevrolet Equinox

2006-04-03
2006-01-0744
A fuel cell-battery hybrid powertrain SUV vehicle is designed using an optimized model-based design process. Powertrain and fuel storage components selected include a 65 kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) power module, two 67 kW electric traction motors, a 35 MPa compressed hydrogen storage tank, a 70 kW nickel metal hydride battery pack, and a University of Waterloo in-house DC/DC converter design. Hardware control uses two controllers, a main supervisory controller and a subsystem controller in addition to any embedded component control modules. Two key innovations of this work include the hybrid control strategy and the DC/DC converter. The final powertrain characteristics are expected to meet a set of Vehicle Technical Specifications (VTS).
Journal Article

Full-Vehicle Model Development for Prediction of Fuel Consumption

2013-04-08
2013-01-1358
A predictive model of a specific vehicle was modeled in the system-level physical modeling tool, MapleSim, for performance and fuel consumption prediction of a full vehicle powertrain, driving a multi-body chassis model with tire models. The project also includes investigation into overall fuel efficiency and effect on vehicle handling for different drive cycles. The goals of this project were to investigate: 1) the relationships between the forces at tire/road interfaces during various drive cycles and the fuel efficiency of a vehicle, and 2) the interaction between the powertrain and the chassis of the vehicle. To accomplish these goals, a complete vehicle model was created in the lumped-parameter physical modeling tool, MapleSim. A great deal of effort has gone into using real parameters and to assure that some mathematical rigour has been employed in its development.
Technical Paper

Impact of One Side Hydrophobic Gas Diffusion Layer on Water Removal Rate and Proton Exchange Membrane Fuel Cell Performance

2012-04-16
2012-01-1221
Proton exchange membrane fuel cell (PEMFC) is considered to be one of the best clean power sources for transportation application. Water management is a critical issue, conventionally achieved by coating the cell components with the hydrophobic materials. In this work, the effects of one surface-coated cathode gas diffusion layer (GDL) on water removal rate, droplet dynamics, and the cell performance have been studied. The coated GDL is fabricated by coating one side of raw GDL (SpectraCarb 2050-A) with 15 wt. % of polytetrafluoroethylene (PTFE) solution but the other side remains uncoated. The raw GDL is commercial one and made of carbon fiber. The contact angles (θ) on both sides of the coated and raw GDL are measured. The pore size distribution, and capillary pressure are measured for the GDL, studied using the method of standard porosimetry (MSP). Water removal rate is measured by using a 20 ml syringe barrel, wherein a 13 mm diameter GDL token is stuck on the barrel opening.
Technical Paper

Implementation and Optimization of a Fuel Cell Hybrid Powertrain

2007-04-16
2007-01-1069
A fuel cell hybrid powertrain design is implemented and optimized by the University of Waterloo Alternative Fuels Team for the ChallengeX competition. A comprehensive set of bench-top and in-vehicle validation results are used to generate accurate fuel cell vehicle models for SIL/HIL control strategy testing and tuning. The vehicle is brought to a “99% buy-off” level of production readiness, and a detailed crashworthiness analysis is performed. The vehicle performance is compared to Vehicle Technical Specifications (VTS).
Technical Paper

Improving Stability of a Narrow Track Personal Vehicle using an Active Tilting System

2014-04-01
2014-01-0087
A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim.
X