Refine Your Search

Topic

Author

Search Results

Technical Paper

A Framework for the Active Control of Corona Ignition Systems

2019-12-19
2019-01-2157
Corona ignition is a promising technology that has been demonstrated to be capable of improving the reliability of lean combustion. However, arcing is unavoidable during corona discharge. The high current surge during arcing can cause excessive damage to the corona ignition system. In this work, a control framework is proposed to help reduce and prevent arcing from happening in a corona ignition system. Experimental results are demonstrated to show the effectiveness of the proposed methodology.
Technical Paper

A Preliminary Study of the Discharge Current and Spark Energy for the Multi-Coil Offset Strategy

2019-04-02
2019-01-0725
To overcome the unfavorable operation conditions caused by lean/diluted charges in modern Spark Ignited (SI) engines, various advanced ignition systems have been proposed in the past. Among them, the dual-coil and multi-coil Transistor Coil Ignition (TCI) systems with offset discharge strategy caused significant attention in literature because they can generate a continuous spark with high spark energy being delivered into the cylinder. Comparing with the dual-coil system, a multi-coil system is capable to apply more flexible control strategies and generate a higher discharge current. However, the spark energy and transfer efficiency of the multi-coil system are still worthy to investigate as they are important performance indicators for a TCI system. In this paper, the discharge characteristics of the dual-coil and triple-coil strategies under both quiescent and flow conditions were studied firstly by experimental methods.
Technical Paper

A Semi-Empirical Model of Spark-Ignited Turbulent Flame Growth

2000-03-06
2000-01-0201
A semi-empirical turbulent flame growth model has been developed based on thermodynamic equilibrium calculations and experiments in a 125-mm cubical combustion chamber. It covers the main flame growth period from spark kernel formation until flame wall contact, including the effects of laminar flame speed, root mean square turbulence intensity, turbulent eddy size, and flame size. As expected, the combustion rate increases with increasing laminar flame speed and/or turbulence intensity. The effect of turbulent eddy scale is less obvious. For a given turbulence intensity, smaller scales produce higher instantaneous flame speed. However, turbulence of a smaller scale also decays more rapidly. Thus, for a given laminar flame speed and turbulence intensity at the time of ignition, there is an optimum turbulent eddy size which leads to the fastest combustion rate over the period considered.
Technical Paper

A Simplified Circuit Model for the Emulation of Glow Phase during Spark Discharge

2018-04-03
2018-01-0092
The ever-growing demand to meet the stringent exhaust emission regulations have driven the development of modern gasoline engines towards lean combustion strategies and downsizing to achieve the reduction of exhaust emission and fuel consumption. Currently, the inductive ignition system is still the dominant ignition system applied in Spark Ignited (SI) engines. It is popular due to its simple design, low cost and robust performance. The new development in spark ignition engines demands higher spark energy to be delivered by the inductive ignition system to overcome the unfavorable ignition conditions caused by the increased and diluted in-cylinder charge. To meet this challenge, better understanding of the inductive ignition system is required. The development of a first principle model for simulation can help in understanding the working mechanism of the system in a better way.
Technical Paper

A Study of Combustion Inefficiencies in SI Engines Powered by Alcohol and Ether Fuels Using Detailed Emission Speciation

2022-03-29
2022-01-0520
Advanced combustion engines, as power sources, dominate all aspects of the transportation sector. Stringent emission and fuel efficiency standards have promoted the research interest in advanced combustion strategies and alternative fuels. Owing to the comparable energy density to the existing fossil fuels and renewable production, alcohol and ether fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. Furthermore, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. However, lean-burn or EGR dilution can introduce combustion inefficiencies in the form of excessive hydrocarbon, carbonyl species and carbon monoxide emissions.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

2011-08-30
2011-01-1814
In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Technical Paper

An Enabling Study of Neat n-Butanol HCCI Combustion on a High Compression-ratio Diesel Engine

2015-03-10
2015-01-0001
This work investigates the benefits and challenges of enabling neat n-butanol HCCI combustion on a high compression ratio (18.2:1) diesel engine. Minor engine modifications are made to implement n-butanol port injection while other engine components are kept intact. The impacts of the fuel change, from diesel to n-butanol, are examined through steady-state engine tests with independent control of the intake boost and exhaust gas recirculation. As demonstrated by the test results, the HCCI combustion of a thoroughly premixed n-butanol/air lean mixture offers near-zero smoke and ultralow NOx emissions even without the use of exhaust gas recirculation and produces comparable engine efficiencies to those of conventional diesel high temperature combustion. The test results also manifest the control challenges of running a neat alcohol fuel in the HCCI combustion mode.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

2008-06-23
2008-01-1670
Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

An Open Cycle Simulation of DI Diesel Engine Flow Field Effect on Spray Processes

2012-04-16
2012-01-0696
Clean diesel engines are one of the fuel efficient and low emission engines of interest in the automotive industry. The combustion chamber flow field and its effect on fuel spray characteristics plays an important role in improving the efficiency and reducing the pollutant emission in a direct injection diesel engine, in terms of influencing processes of breakup, evaporation mixture formation, ignition, combustion and pollutant formation. Ultra-high injection pressure fuel sprays have benefits in jet atomization, penetration and air entrainment, which promote better fuel-air mixture and combustion. CFD modeling is a valuable tool to acquire detailed information about these important processes. In this research, the characteristics of ultra-high injection pressure diesel fuel sprays are simulated and validated in a quiescent constant volume chamber. A profile function is utilized in order to apply variable velocity and mass flow rate at the nozzle exit.
Technical Paper

Boosted Current Spark Strategy for Lean Burn Spark Ignition Engines

2018-04-03
2018-01-1133
Spark ignition systems with the capability of providing spark event with either higher current level or longer discharge duration has been developed in recent years to help IC engines towards clean combustion with higher efficiency under lean/diluted intake charge. In this research, a boosted current spark strategy was proposed to investigate the effect of spark discharge current level and discharge duration on the combustion process. Firstly, the discharge characteristics of a boosted current spark system were tested with a traditional spark plug under crossflow conditions, and results showed that the spark channel was more stable, and was stretched much longer when the discharge current was boosted. Then the boosted current strategy was used in a spark ignition engine operating under lean conditions. Boosted current was added to the spark channel with different timing, duration, and current levels.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Journal Article

Combustion Simulation of Dual Fuel CNG Engine Using Direct Injection of Natural Gas and Diesel

2015-04-14
2015-01-0851
The increased availability of natural gas (NG) in the U.S. has renewed interest in the application to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties to generate a spatial gradient of fuel-air mixtures and reactivity. Typically, a high octane fuel is premixed by means of port-injection, followed by direct injection of a high cetane fuel late in the compression stroke. Previous work by the authors has shown that NG and diesel RCCI offers improved fuel efficiency and lower oxides of nitrogen (NOx) and soot emissions when compared to conventional diesel diffusion combustion. The work concluded that NG and diesel RCCI engines are load limited by high rates of pressure rise (RoPR) (>15 bar/deg) and high peak cylinder pressure (PCP) (>200 bar).
Technical Paper

Combustion Stability Improvement via Multiple Ignition Sites on a Production Engine

2020-04-14
2020-01-1115
For spark ignition (SI) engines, further improvement of engine efficiency has become the major development trend, and lean burn/EGR technologies, as well as intensified in-cylinder flow, need to be adapted to reach that target. Stronger ignition sources become more favorable under extreme lean/EGR conditions. Among the ignition technologies developed, multiple ignition sites technology has been proved to be an effective way to help with the initial flame kernel development. In this paper, a spark ignited 4-cylinder turbo-charged production engine is employed to investigate the impact of multiple ignition sites technology on engine performance under lean burn conditions. Four in-house designed 3-core sparkplugs are installed on the cylinders to replace traditional stock sparkplugs, in order to generate multiple ignition sites in the cylinders.
Technical Paper

Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas

2014-04-01
2014-01-1321
Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties that are injected at different times to generate a spatial gradient of fuel-air mixtures and reactivity. Researchers have shown that RCCI offers improved fuel efficiency and lower NOx and Soot exhaust emissions when compared to conventional diesel diffusion combustion. The majority of previous research work has been focused on premixed gasoline or ethanol for the low reactivity fuel and diesel for the high reactivity fuel. The increased availability of natural gas (NG) in the U.S. has renewed interest in the application of compressed natural gas (CNG) to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Thus, RCCI using CNG and diesel fuel warrants consideration.
Technical Paper

Development of a Fuel Injection Strategy for Diesel LTC

2008-04-14
2008-01-0057
A production V-8 engine was redesigned to run on low temperature combustion (LTC) with conventional Diesel fuel. Two fuel injection strategies were used to attain reduction in soot and NOx; a) early premixed injection strategy: fuel injected early during the compression stroke and b) late premixed injection strategy: fuel injected close to TDC with heavy EGR. The early premixed injection strategy yielded low NOx and soot but struggled to vaporize the fuel as noted in unburned hydrocarbons readings. The late premixed injection strategy introduced the fuel at higher in-cylinder temperatures and densities, improving the fuel's vaporization and limited the unburned hydrocarbon and carbon monoxide. The use of high EGR and high injection pressure for late premixed injection strategy provided sufficiently long ignition delay that resulted in partially premixed cylinder charge before combustion, and thereby prevented high soot, even in presence of high EGR.
Technical Paper

Development of a Plastic Manifold Noise Syntheses Technique

2001-03-05
2001-01-1144
The effects of engine noise in plastic manifolds has been a subject of study in the automotive Industry. Several SAE papers have been published on the subject. Most testing described requires access to engine dynamometers and other elaborate equipment. As part of a general study of plastic intake manifold noise characteristics, this study was undertaken to develop a synthesis bench for enabling low cost noise testing of plastic induction systems including plastic manifolds. Computer simulation of engine intake noise was used as part of a correlation between the plastic manifold synthesis bench and actual engine measurements. The Fast Fourier Transform (FFT) analysis provided analogous results between the predicted theoretical and two measured signals with a fundamental frequency at approximately 80 Hz. Qualitative and statistical comparisons of the time domain signals also proved equally favourable. Recommendations are included for further development of this approach.
Technical Paper

Discharge Current Management for Diluted Combustion under Forced Flow Conditions

2020-04-14
2020-01-1118
Lean burn or EGR diluted combustion with enhanced charge motion is effective in improving the efficiency of spark ignition engines. However, the ignition process under these conditions is getting more challenging due to higher ignition energy required by the lean or diluted mixture, as well as the interactions of the gas flow on the flame kernel. Enhanced spark discharge energy is essential to initiate the combustion under these conditions. Moreover, the discharge process should be more carefully controlled to improve the effectiveness of the spark. In this study, spark ignition systems with boosted discharge energy are used to ignite diluted air-fuel mixture under forced flow conditions. The impacts of the discharge current level, the discharge duration and the discharge current profile on the ignition are investigated in detail using optical diagnosis.
Technical Paper

Effect of Spark Assisted Compression Ignition on the End-Gas Autoignition with DME-air Mixtures in a Rapid Compression Machine

2024-04-09
2024-01-2822
Substantial effort has been devoted to utilizing homogeneous charge compression ignition (HCCI) to improve thermal efficiency and reduce emission pollutants in internal combustion engines. However, the uncertainty of ignition timing and limited operational range restrict further adoption for the industry. Using the spark-assisted compression ignition (SACI) technique has the advantage of using a spark event to control the combustion process. This study employs a rapid compression machine to characterize the ignition and combustion process of Dimethyl ether (DME) under engine-like background temperature and pressures and combustion regimes, including HCCI, SACI, and knocking onsite. The spark ignition timing was swept to ignite the mixture under various thermodynamic conditions. This investigation demonstrates the presence of four distinct combustion regimes, including detonation, strong end-gas autoignition, mild end-gas autoignition, and HCCI.
X