Refine Your Search

Topic

Search Results

Technical Paper

A Semi-Empirical Model of Spark-Ignited Turbulent Flame Growth

2000-03-06
2000-01-0201
A semi-empirical turbulent flame growth model has been developed based on thermodynamic equilibrium calculations and experiments in a 125-mm cubical combustion chamber. It covers the main flame growth period from spark kernel formation until flame wall contact, including the effects of laminar flame speed, root mean square turbulence intensity, turbulent eddy size, and flame size. As expected, the combustion rate increases with increasing laminar flame speed and/or turbulence intensity. The effect of turbulent eddy scale is less obvious. For a given turbulence intensity, smaller scales produce higher instantaneous flame speed. However, turbulence of a smaller scale also decays more rapidly. Thus, for a given laminar flame speed and turbulence intensity at the time of ignition, there is an optimum turbulent eddy size which leads to the fastest combustion rate over the period considered.
Technical Paper

A Study of Combustion Inefficiencies in SI Engines Powered by Alcohol and Ether Fuels Using Detailed Emission Speciation

2022-03-29
2022-01-0520
Advanced combustion engines, as power sources, dominate all aspects of the transportation sector. Stringent emission and fuel efficiency standards have promoted the research interest in advanced combustion strategies and alternative fuels. Owing to the comparable energy density to the existing fossil fuels and renewable production, alcohol and ether fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. Furthermore, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. However, lean-burn or EGR dilution can introduce combustion inefficiencies in the form of excessive hydrocarbon, carbonyl species and carbon monoxide emissions.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

2011-08-30
2011-01-1814
In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

2008-06-23
2008-01-1670
Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

An Open Cycle Simulation of DI Diesel Engine Flow Field Effect on Spray Processes

2012-04-16
2012-01-0696
Clean diesel engines are one of the fuel efficient and low emission engines of interest in the automotive industry. The combustion chamber flow field and its effect on fuel spray characteristics plays an important role in improving the efficiency and reducing the pollutant emission in a direct injection diesel engine, in terms of influencing processes of breakup, evaporation mixture formation, ignition, combustion and pollutant formation. Ultra-high injection pressure fuel sprays have benefits in jet atomization, penetration and air entrainment, which promote better fuel-air mixture and combustion. CFD modeling is a valuable tool to acquire detailed information about these important processes. In this research, the characteristics of ultra-high injection pressure diesel fuel sprays are simulated and validated in a quiescent constant volume chamber. A profile function is utilized in order to apply variable velocity and mass flow rate at the nozzle exit.
Journal Article

Combustion Simulation of Dual Fuel CNG Engine Using Direct Injection of Natural Gas and Diesel

2015-04-14
2015-01-0851
The increased availability of natural gas (NG) in the U.S. has renewed interest in the application to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties to generate a spatial gradient of fuel-air mixtures and reactivity. Typically, a high octane fuel is premixed by means of port-injection, followed by direct injection of a high cetane fuel late in the compression stroke. Previous work by the authors has shown that NG and diesel RCCI offers improved fuel efficiency and lower oxides of nitrogen (NOx) and soot emissions when compared to conventional diesel diffusion combustion. The work concluded that NG and diesel RCCI engines are load limited by high rates of pressure rise (RoPR) (>15 bar/deg) and high peak cylinder pressure (PCP) (>200 bar).
Technical Paper

Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas

2014-04-01
2014-01-1321
Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties that are injected at different times to generate a spatial gradient of fuel-air mixtures and reactivity. Researchers have shown that RCCI offers improved fuel efficiency and lower NOx and Soot exhaust emissions when compared to conventional diesel diffusion combustion. The majority of previous research work has been focused on premixed gasoline or ethanol for the low reactivity fuel and diesel for the high reactivity fuel. The increased availability of natural gas (NG) in the U.S. has renewed interest in the application of compressed natural gas (CNG) to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Thus, RCCI using CNG and diesel fuel warrants consideration.
Technical Paper

Effect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine

2021-04-06
2021-01-0478
Meeting the increasingly stringent emission and fuel efficiency standards is the primary objective of the modern automotive research. Lean/diluted combustion is a promising avenue to realize high-efficiency combustion and reduce emissions in SI engines. Under diluted conditions, the flame propagation speed is reduced because of the reduced charge reactivity. Enhancing in-cylinder charge motion and turbulence, and thereby increasing the flame speed, is a possible way to harness the combustion process in SI engines. However, charge motion can have a significant effect on the spark ignition process because of the reduced discharge duration and frequent restrikes. A longer discharge duration can aid in the formation of a self-sustained flame kernel and subsequent stable ignition. Therefore, an empirical study is undertaken to investigate the effect of discharge duration and ignition timing on the ignition and early combustion in a port fueled SI engine, operated under lean conditions.
Technical Paper

Effects of Spark Discharge Energy Scheduling on Flame Kernel Formation under Quiescent and Flow Conditions

2019-04-02
2019-01-0727
The breakdown phase is considered to have the highest electric-thermal energy transfer efficiency among all the discharge modes in a conventional spark ignition process. In this study, an external capacitor is connected in parallel with the spark plug in order to enhance the discharge energy and power during the breakdown phase. A constant volume combustion chamber is used to investigate the high power spark discharge under different background pressures and with varied flow velocities. Results show that the added parallel capacitance is effective in redistributing the spark energy. With the increase in parallel capacitance, the breakdown power and energy increase, though at the cost of reduced glow phase energy. The breakdown energy also increases with the increased background pressure. Then combustion tests are carried out to study the effects of the breakdown power enhanced spark on flame propagation under both quiescent and flow conditions via optical diagnosis.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Journal Article

Heat Release Pattern Diagnostics to Improve Diesel Low Temperature Combustion

2008-06-23
2008-01-1726
Empirical results indicated that the engine emission and fuel efficiency of low-temperature combustion (LTC) cycles can be optimized by adjusting the fuel-injection scheduling in order to obtain appropriate combustion energy release or heat-release rate patterns. Based on these empirical results the heat-release characteristics were correlated with the regulated emissions such as soot, hydrocarbon and oxides of nitrogen. The transition from conventional combustion to LTC with the desired set of heat-release rate has been implemented. This transition was facilitated with the simplified heat-release characterization wherein each of the consecutive engine cycles was analyzed with a real-time controller embedded with an FPGA (field programmable gate array) device. The analyzed results served as the primary feedback control signals to adjust fuel injection scheduling. The experimental efforts included the boost/backpressure, exhaust gas recirculation, and load transients in the LTC region.
Technical Paper

Ignition Improvement for Ultra-Lean Dilute Gasoline Combustion

2017-10-08
2017-01-2244
In this work, a spatially distributed spark ignition strategy was employed to improve the ignition process of well-mixed ultra-lean dilute gasoline combustion in a high compression ratio (13.1:1) single cylinder engine at partial loads. The ignition energy was distributed in the perimeter of a 3-pole igniter. It was identified that on the basis of similar total spark energy, the 3-pole ignition mode can significantly shorten the early flame kernel development period and reduce the cyclic variation of combustion phasing, for the spark timing sweep tests at λ 1.5. The effect of ignition energy level on lean-burn operation was investigated at λ 1.6. Within a relatively low ignition energy range, i.e. below 46 mJ per pole, the increase in ignition energy via ether 1 pole or 3 pole can improve the controllability over combustion phasing and reduce the variability of lean burn combustion. Higher ignition energy was required in order to enable ultra-lean engine operation with λ above 1.6.
Technical Paper

Ignition Improvement of Premixed Methane-Air Mixtures by Distributed Spark Discharge

2015-09-01
2015-01-1889
In order to improve the fuel economy for future high-efficiency spark ignition engines, the use of advanced combustion strategies with an overall lean and/or exhaust gas recirculation diluted cylinder charge is deemed to be beneficial, provided a reliable ignition process available. In this paper, experimental results of igniting methane-air mixture by means of capacitive coupled ignition and multi-coil distributed spark ignition are presented. It is found that with a conventional spark plug electrode configuration, increase of spark energy does not proportionally enhance the ignition flame kernel development. The use of capacitive coupled ignition to enhance the initial transient power resulted in faster kernel growth compared to the conventional system. The distribution of the spark energy across a number of spark gaps shows considerable benefit.
Journal Article

Impact of Fuel Properties on Diesel Low Temperature Combustion

2011-04-12
2011-01-0329
Extensive empirical work indicates that exhaust gas recirculation (EGR) is effective to lower the flame temperature and thus the oxides of nitrogen (NOx) production in-cylinder in diesel engines. Soot emissions are reduced in-cylinder by improved fuel/air mixing. As engine load increases, higher levels of intake boost and fuel injection pressure are required to suppress soot production. The high EGR and improved fuel/air mixing is then critical to enable low temperature combustion (LTC) processes. The paper explores the properties of the Fuels for Advanced Combustion Engines (FACE) Diesel, which are statistically designed to examine fuel effects, on a 0.75L single cylinder engine across the full range of load, spanning up to 15 bar IMEP. The lower cetane number (CN) of the diesel fuel improved the mixing process by prolonging the ignition delay and the mixing duration leading to substantial reduction of soot at low to medium loads, improving the trade-off between NOx and soot.
Technical Paper

Impact of Plasma Stretch on Spark Energy Release Rate under Flow Conditions

2022-03-29
2022-01-0438
Performance of the ignition system becomes more important than ever, because of the extensively used EGR in modern spark-ignition engines. Future lean burn SI and SACI combustion modes demand even stronger ignition capability for robust ignition control. For spark-based ignition systems, extensive research has been carried out to investigate the discharge characteristics of the ignition process, including discharge current amplitude, discharge duration, spark energy, and plasma stretching. The correlation between the spark stretch and the discharge energy, as well as the impact of discharge current level on this correlation, are important with respect to both ignition performance, and ignition system design. In this paper, a constant volume combustion chamber is applied to study the impact of plasma stretch on the spark energy release process with cross-flow speed from 0 m/s up to 70 m/s.
Journal Article

Impact of Spark Plasma Length on Flame Kernel Development under Flow Condition

2020-04-14
2020-01-1114
Advanced ignition systems with enhanced discharge current have been extensively investigated in research, since they are highly regarded as having the potential to overcome challenges that arise when spark-ignition engines are running under lean or EGR diluted conditions. Local flow field is also of particular importance to improve the ignitability of the air-fuel mixture in SI engines as the spark plasma channel can be stretched by the flow across the spark gap, leading to longer plasma length, thus more thermal spark energy distributed to the air-fuel mixture in the vicinity of the spark plug. Research results have shown that a constantly high discharge current is effective to maintain a stable spark plasma channel with less restrikes and longer plasma holding period.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
X