Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

An Adaptive Vehicle Stability Control Algorithm Based on Tire Slip-Angle Estimation

2012-09-24
2012-01-2016
Active safety systems have become an essential part of today's vehicles including SUVs and LTVs. Although they have advanced in many aspects, there are still many areas that they can be improved. Especially being able to obtain information about tire-vehicle states (e.g. tire slip-ratio, tire slip-angle, tire forces, tire-road friction coefficient), would be significant due to the key role tires play in providing directional stability and control. This paper first presents the implementation strategy for a dynamic tire slip-angle estimation methodology using a combination of a tire based sensor and an observer system. The observer utilizes two schemes, first of which employs a Sliding Mode Observer to obtain lateral and longitudinal tire forces. The second step then utilizes the force information and outputs the tire slip-angle using a Luenberger observer and linearized tire model equations.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Journal Article

Enhancement of Collision Mitigation Braking System Performance Through Real-Time Estimation of Tire-road Friction Coefficient by Means of Smart Tires

2012-09-24
2012-01-2014
In the case of modern day vehicle control systems employing a feedback control structure, a real-time estimate of the tire-road contact parameters is invaluable for enhancing the performance of the chassis control systems such as anti-lock braking systems (ABS) and electronic stability control (ESC) systems. However, at present, the commercially available tire monitoring systems are not equipped to sense and transmit high speed dynamic variables used for real-time active safety control systems. Consequently, under the circumstances of sudden changes to the road conditions, the driver's ability to maintain control of the vehicle maybe at risk. In many cases, this requires intervention from the chassis control systems onboard the vehicle. Although these systems perform well in a variety of situations, their performance can be improved if a real-time estimate of the tire-road friction coefficient is available.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Interconnected Roll Stability Control System for Semitrucks with Double Trailers

2023-04-11
2023-01-0906
This paper provides a simulation analysis of a novel interconnected roll stability control (RSC) system for improving the roll stability of semitrucks with double trailers. Different from conventional RSC systems where each trailer’s RSC module operates independently, the studied interconnected RSC system allows the two trailers’ RSC systems to communicate with each other. As such, if one trailer’s RSC activates, the other one is also activated to assist in further scrubbing speed or intervening sooner. Simulations are performed using a multi-body vehicle dynamics model that is developed in TruckSim® and coupled with the RSC model established in Simulink®. The dynamic model is validated using track test data. The simulation results for a ramp steer maneuver (RSM) and sine-with-dwell (SWD) maneuver indicate that the proposed RSC system reduces lateral acceleration and rollover index for both trailers, decreasing the likelihood of wheel tip-up and vehicle rollover.
Technical Paper

Robust Optimal Control of Vehicle Lateral Motion with Driver-in-the-Loop

2012-09-24
2012-01-1903
Dynamic “Game Theory” brings together different features that are keys to many situations in control design: optimization behavior, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In previous studies, it was shown that vehicle stability can be represented by a cooperative dynamic/difference game such that its two agents (players), namely, the driver and the vehicle stability controller (VSC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the VSC command is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degree of freedom (DOF) vehicle handling performance model is put into discrete form to develop the game equations of motion. This study focus on the uncertainty in the inputs, and more specifically, the driver's steering input.
Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Vehicle System Simulator: Development and Validation

2011-09-13
2011-01-2166
A graphical user interface (GUI) toolbox called Vehicle System Simulator (VSS) is developed in MATLAB to ease the use of this vehicle model and hopefully encourage its widespread application in the future. This toolbox uses the inherent MATLAB discrete-time solvers and is mainly based on Level-2 s-function design. This paper describes its built-in vehicle dynamics model based on multibody dynamics approach and nonlinear tire models, and traction/braking control systems including Cruise Control and Differential Braking systems. The built-in dynamics model is validated against CarSim 8 and the simulation results prove its accuracy. This paper illustrates the application of this new MATLAB toolbox called Vehicle System Simulator and discusses its development process, limitations, and future improvements.
X