Refine Your Search

Topic

Author

Search Results

Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

Advanced Castings Made Possible Through Additive Manufacturing

2017-03-28
2017-01-1663
Binder jetting of sand molds and cores for metal casting provides a scalable and efficient means of producing metal components with complex geometric features made possible only by Additive Manufacturing. Topology optimization software that can mathematically determine the optimum placement of material for a given set of design requirements has been available for quite some time. However, the optimized designs are often not manufacturable using standard metal casting processes due to undercuts, backdraft and other issues. With the advent of binder-based 3D printing technology, sand molds and cores can be produced to make these optimized designs as metal castings.
Technical Paper

An Extended-Range Electric Vehicle Control Strategy for Reducing Petroleum Energy Use and Well-to-Wheel Greenhouse Gas Emissions

2011-04-12
2011-01-0915
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2008 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Laboratory (ANL) and sponsored by General Motors (GM) and the U.S. Department of Energy (DoE). Following GM's vehicle development process, HEVT established goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in, range-extended hybrid electric vehicle. The challenge involves designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use and well-to-wheels (WTW) greenhouse gas (GHG) emissions. In order to interface with and control the vehicle, the team added a National Instruments (NI) CompactRIO (cRIO) to act as a hybrid vehicle supervisory controller (HVSC).
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Technical Paper

Developing a Compact Continuous-State Markov Chain for Terrain Road Profiles

2013-04-08
2013-01-0629
Accurate terrain models provide the chassis designer with a powerful tool to make informed design decisions early in the design process. It is beneficial to characterize the terrain as a stochastic process, allowing limitless amounts of synthetic terrain to be created from a small number of parameters. A continuous-state Markov chain is proposed as an alternative to the traditional discrete-state chain currently used in terrain modeling practice. For discrete-state chains, the profile transitions are quantized then characterized by a transition matrix (with many values). In contrast, the transition function of a continuous-state chain represents the probability density of transitioning between any two states in the continuum of terrain heights. The transition function developed in this work uses a location-scale distribution with polynomials modeling the parameters as functions of the current state.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

Development & Integration of a Charge Sustaining Control Strategy for a Series-Parallel Plug-In Hybrid Electric Vehicle

2014-10-13
2014-01-2905
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle.
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Energy-Efficient and Context-Aware Computing in Software-Defined Vehicles for Advanced Driver Assistance Systems (ADAS)

2024-04-09
2024-01-2051
The rise of Software-Defined Vehicles (SDV) has rapidly advanced the development of Advanced Driver Assistance Systems (ADAS), Autonomous Vehicle (AV), and Battery Electric Vehicle (BEV) technology. While AVs need power to compute data from perception to controls, BEVs need the efficiency to optimize their electric driving range and stand out compared to traditional Internal Combustion Engine (ICE) vehicles. AVs possess certain shortcomings in the current world, but SAE Level 2+ (L2+) Automated Vehicles are the focus of all major Original Equipment Manufacturers (OEMs). The most common form of an SDV today is the amalgamation of AV and BEV technology on the same platform which is prominently available in most OEM’s lineups. As the compute and sensing architectures for L2+ automated vehicles lean towards a computationally expensive centralized design, it may hamper the most important purchasing factor of a BEV, the electric driving range.
Journal Article

Enhancement of Collision Mitigation Braking System Performance Through Real-Time Estimation of Tire-road Friction Coefficient by Means of Smart Tires

2012-09-24
2012-01-2014
In the case of modern day vehicle control systems employing a feedback control structure, a real-time estimate of the tire-road contact parameters is invaluable for enhancing the performance of the chassis control systems such as anti-lock braking systems (ABS) and electronic stability control (ESC) systems. However, at present, the commercially available tire monitoring systems are not equipped to sense and transmit high speed dynamic variables used for real-time active safety control systems. Consequently, under the circumstances of sudden changes to the road conditions, the driver's ability to maintain control of the vehicle maybe at risk. In many cases, this requires intervention from the chassis control systems onboard the vehicle. Although these systems perform well in a variety of situations, their performance can be improved if a real-time estimate of the tire-road friction coefficient is available.
Technical Paper

Evaluating Simulation Driver Model Performance Using Dynamometer Test Criteria

2022-03-29
2022-01-0530
The influence of driver modeling and drive cycle target speed trace modification on vehicle dynamics within energy consumption simulations is studied. EPA dynamometer speed error criteria and the SAE J2951 Drive Quality Evaluation for Chassis Dynamometer Testing standard are applied to simulation outputs as proposed components of simulation validation, providing guidelines for acceptable vehicle speed outputs and allowing comparison of simulation results to reported EPA dynamometer test statistics. The combined effect of driver model tuning and drive cycle interpolation methods is investigated for the UDDS, HwFET and US06 drive cycles, with EPA-specified linearly interpolated speed trace and a PI controller driver as a baseline result.
Technical Paper

Fuel Permeation Study on Various Seal Materials

2000-03-06
2000-01-1099
The advent of low emission regulations on fuel systems has made conventional sealing materials such as acry-lonitrile butadiene rubber (NBR) unfit for sealing most fuel systems. Therefore, it is imperative to look beyond conventional rubbers and towards more exotic materials to seal such applications. In this study, the permeation characteristics and the change in physical properties of several elastomeric materials (NBR, hydrogenated NBR (HNBR), and fluorocarbon elastomers (FKM)) as well as various poly(tetrafluoroethylene) (PTFE) composites were evaluated with four different fuel mixtures. The sealing materials were tested using vaporimeter cups. The results are discussed as a function of the materials' nature, composition, and filler content.
Journal Article

Identifying Pedal Misapplication Behavior Using Event Data Recorders

2022-03-29
2022-01-0817
Pedal misapplication (PM) crashes, i.e., crashes caused by a driver pressing one pedal while intending to press another pedal, have historically been identified by searching unstructured crash narratives for keywords and verified via labor-intensive manual inspection. This study proposes an alternative method to identify PM crashes using event data recorders (EDRs). Since drivers in emergency braking situations are motivated to hit the brake hard, it follows that drivers in emergency braking situations that commit a PM would likewise hit the accelerator hard, likely harder than accelerator pedal application during normal driving. Thus, the time-series accelerator pedal position and the derived accelerator pedal application rate were used to isolate accelerator misapplications. Additional strategic filters were applied based on characteristics observed from previous PM analyses to reduce false positive PM identifications.
Journal Article

Impact of Intelligent Transportation Systems on Vehicle Fuel Consumption and Emission Modeling: An Overview

2014-01-15
2013-01-9094
Climate change due to greenhouse gas emissions has led to new vehicle emissions standards which in turn have led to a call for vehicle technologies to meet these standards. Modeling of vehicle fuel consumption and emissions emerged as an effective tool to help in developing and assessing such technologies, to help in predicting aggregate vehicle fuel consumption and emissions, and to complement traffic simulation models. The paper identifies the current state of the art on vehicle fuel consumption and emissions modeling and its utilization to test the environmental impact of the Intelligent Transportation Systems (ITS)’ measures and to evaluate transportation network improvements. The study presents the relevant models to ITS in the key classifications of models in this research area. It demonstrates that the trends of vehicle fuel consumption and emissions provided by current models generally do satisfactorily replicate field data trends.
Technical Paper

Impact of Supervisory Control on Criteria Tailpipe Emissions for an Extended-Range Electric Vehicle

2012-04-16
2012-01-1193
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
X