Refine Your Search

Topic

Author

Search Results

Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Technical Paper

Can Semiactive Dampers with Skyhook Control Improve Roll Stability of Passenger Vehicles?

2004-05-04
2004-01-2099
Skyhook control has been used extensively for semiactive dampers for a variety of applications, most widely for passenger vehicle suspensions. This paper provides an experimental evaluation of how well skyhook control works for improving roll stability of a passenger vehicle. After discussing the formulation for various semiactive control methods that have been suggested in the past for vehicle suspensions, the paper includes the implementation of a semiactive system with magneto-rheological (MR) dampers on a sport utility vehicle. The vehicle is used for a series of road tests that includes lane change maneuvers, with different types of suspensions. The suspensions that are tested include the stock suspension, the uncontrolled MR dampers, skyhook control, and a new semiactive control method called “SIA skyhook.” The SIA Skyhook augments the conventional skyhook control with steering input, in order to account for the suspension requirements during a lateral maneuver.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

Development & Integration of a Charge Sustaining Control Strategy for a Series-Parallel Plug-In Hybrid Electric Vehicle

2014-10-13
2014-01-2905
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP), HEVT is designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle.
Technical Paper

Development and Validation of an E85 Split Parallel E-REV

2011-04-12
2011-01-0912
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2009 - 2011 EcoCAR: The NeXt Challenge Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM), and the U.S. Department of Energy (DOE). Following GM's Vehicle Development Process (VDP), HEVT established team goals that meet or exceed the competition requirements for EcoCAR in the design of a plug-in extended-range hybrid electric vehicle. The competition requires participating teams to improve and redesign a stock Vue XE donated by GM. The result of this design process is an Extended-Range Electric Vehicle (E-REV) that uses grid electric energy and E85 fuel for propulsion. The vehicle design is predicted to achieve an SAE J1711 utility factor corrected fuel consumption of 2.9 L(ge)/100 km (82 mpgge) with an estimated all electric range of 69 km (43 miles) [1].
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Effects of Commercial Truck Configuration on Roll Stability in Roundabouts

2015-09-29
2015-01-2741
This paper presents the results of a study on the effect of truck configurations on the roll stability of commercial trucks in roundabouts that are commonly used in urban settings with increasing frequency. The special geometric layout of roundabouts can increase the risk of rollover in high-CG vehicles, even at low speeds. Relatively few in-depth studies have been conducted on rollover stability of commercial trucks in roundabouts. This study uses a commercially available software, TruckSim®, to perform simulations on four truck configurations, including a single-unit truck, a WB-67 semi-truck, the combination of a tractor with double 28-ft trailers, and the combination of a tractor with double 40-ft trailers. A single-lane and multilane roundabout are modeled, both with a truck apron. Three travel movements through the roundabouts are considered, including right turn, through-movement, and left turn.
Technical Paper

Energy-Efficient and Context-Aware Computing in Software-Defined Vehicles for Advanced Driver Assistance Systems (ADAS)

2024-04-09
2024-01-2051
The rise of Software-Defined Vehicles (SDV) has rapidly advanced the development of Advanced Driver Assistance Systems (ADAS), Autonomous Vehicle (AV), and Battery Electric Vehicle (BEV) technology. While AVs need power to compute data from perception to controls, BEVs need the efficiency to optimize their electric driving range and stand out compared to traditional Internal Combustion Engine (ICE) vehicles. AVs possess certain shortcomings in the current world, but SAE Level 2+ (L2+) Automated Vehicles are the focus of all major Original Equipment Manufacturers (OEMs). The most common form of an SDV today is the amalgamation of AV and BEV technology on the same platform which is prominently available in most OEM’s lineups. As the compute and sensing architectures for L2+ automated vehicles lean towards a computationally expensive centralized design, it may hamper the most important purchasing factor of a BEV, the electric driving range.
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Technical Paper

Evaluating Simulation Driver Model Performance Using Dynamometer Test Criteria

2022-03-29
2022-01-0530
The influence of driver modeling and drive cycle target speed trace modification on vehicle dynamics within energy consumption simulations is studied. EPA dynamometer speed error criteria and the SAE J2951 Drive Quality Evaluation for Chassis Dynamometer Testing standard are applied to simulation outputs as proposed components of simulation validation, providing guidelines for acceptable vehicle speed outputs and allowing comparison of simulation results to reported EPA dynamometer test statistics. The combined effect of driver model tuning and drive cycle interpolation methods is investigated for the UDDS, HwFET and US06 drive cycles, with EPA-specified linearly interpolated speed trace and a PI controller driver as a baseline result.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

Identifying Pedal Misapplication Behavior Using Event Data Recorders

2022-03-29
2022-01-0817
Pedal misapplication (PM) crashes, i.e., crashes caused by a driver pressing one pedal while intending to press another pedal, have historically been identified by searching unstructured crash narratives for keywords and verified via labor-intensive manual inspection. This study proposes an alternative method to identify PM crashes using event data recorders (EDRs). Since drivers in emergency braking situations are motivated to hit the brake hard, it follows that drivers in emergency braking situations that commit a PM would likewise hit the accelerator hard, likely harder than accelerator pedal application during normal driving. Thus, the time-series accelerator pedal position and the derived accelerator pedal application rate were used to isolate accelerator misapplications. Additional strategic filters were applied based on characteristics observed from previous PM analyses to reduce false positive PM identifications.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
X