Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
X