Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2005 Ford GT - Melding the Past and the Future

2004-03-08
2004-01-1251
The 2005 Ford GT high performance sports car was designed and built in keeping with the heritage of the 1960's LeMans winning GT40 while maintaining the image of the 2002 GT40 concept vehicle. This paper reviews the technical challenges in designing and building a super car in 12 months while meeting customer expectations in performance, styling, quality and regulatory requirements. A team of dedicated and performance inspired engineers and technical specialists from Ford Motor Company Special Vehicle Teams, Research and Advanced Engineering, Mayflower Vehicle Systems, Roush Industries, Lear, and Saleen Special Vehicles was assembled and tasked with designing the production 2005 vehicle in record time.
Technical Paper

2005 Ford GT- Maintaining Your Cool at 200 MPH

2004-03-08
2004-01-1257
An integrated engineering approach using computer modeling, laboratory and vehicle testing enabled the Ford GT engineering team to achieve supercar thermal management performance within the aggressive program timing. Theoretical and empirical test data was used during the design and development of the engine cooling system. The information was used to verify design assumptions and validate engineering efforts. This design approach allowed the team to define a system solution quickly and minimized the need for extensive vehicle level testing. The result of this approach was the development of an engine cooling system that adequately controls air, oil and coolant temperatures during all driving and environmental conditions.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Technical Paper

A Front Rail Design for Efficient Crush Energy Absorption

1995-10-31
1995-20-0016
Although there was a safety awareness from the earliest days of the automobile, systematic approaches to designing for safety became more widespread after 1950 when large numbers of vehicles came into use in both the United States and Europe, and governments in both continents undertook a widespread highway development. Industry response to safety objectives and also to government regulation has produced a large number of safety enhancing engineering developments, including radial tires, disc brakes, anti-lock brakes, improved vehicle lighting systems, better highway sign support poles, padded instrument panels, better windshield retention systems, collapsible hood structures, accident sensitive fuel pump shut-off valves, and other items. A significant development was the design of the energy absorbing front structures.
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

2000-10-16
2000-01-2797
Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

A Method to Measure Air Conditioning Refrigerant Contributions to Vehicle Evaporative Emissions (SHED Test)

1999-05-03
1999-01-1539
Although the intent of the SHED test (Sealed Housing for Evaporative Determination) is to measure evaporative fuel losses, the SHED sampling methodology in fact measures hydrocarbons from all vehicle and test equipment sources. Leakage of air conditioning (AC) refrigerant is one possible non-fuel source contributing to the SHED hydrocarbon measurement. This report describes a quick and relatively simple method to identify the contribution of AC refrigerant to the SHED analyzer reading. R134A (CH2FCF3), the hydrofluorocarbon refrigerant used in all current automotive AC systems, as well as its predecessor, the chlorofluorocarbon R12, can be detected using the gas chromatography methods currently in place at many emissions labs for the speciation of exhaust and evaporative hydrocarbon emissions.
Technical Paper

A Multibody Dynamics Approach to Leaf Spring Simulation for Upfront Analyses

2015-06-15
2015-01-2228
Drivelines used in modern pickup trucks commonly employ universal joints. This type of joint is responsible for second driveshaft order vibrations in the vehicle. Large displacements of the joint connecting the driveline and the rear axle have a detrimental effect on vehicle NVH. As leaf springs are critical energy absorbing elements that connect to the powertrain, they are used to restrain large axle windup angles. One of the most common types of leaf springs in use today is the multi-stage parabolic leaf spring. A simple SAE 3-link approximation is adequate for preliminary studies but it has been found to be inadequate to study axle windup. A vast body of literature exists on modeling leaf springs using nonlinear FEA and multibody simulations. However, these methods require significant amount of component level detail and measured data. As such, these techniques are not applicable for quick sensitivity studies at design conception stage.
Technical Paper

A New Approach for Weight Reduction in Truck Frame Design

1993-11-01
933037
A new, systematic, sensitivity based design process for weight reduction is presented. Traditionally, a trial and error method is used when a design fails to meet the weight and the design criteria, which often conflict. This old approach not only is time and cost consuming but also does not provide insight into structural behavior. This proposed process uses state-of-the-art technologies such as design sensitivity analysis, numerical optimization, graphical user interface, etc. It handles multi-discipline design criteria simultaneously and provides design engineers insight into structural responses for frequency, durability, and stiffness concerns and a means for systematic weight reduction and quality improvement. The new design process has been applied for the weight reduction of advanced truck frame designs. Results show that a significant weight savings has been achieved while all design criteria are met.
Technical Paper

A Perceptual Model for Power Adjustable Steering Column Sounds

1995-05-01
951371
The importance of the automotive customer's perception of vehicle quality has been realized to be of utmost importance by car manufacturers. Sounds that occur within the passenger compartment can have a distinct affect on this “quality” impression. Many of these sounds originate from small DC motor driven systems within the vehicle. This study addresses the sound quality of motor driven power adjustable steering columns found in many luxury class vehicles. The primary components of this work include the subjective paired comparison evaluation of the sounds generated from these systems and the corresponding correlation to objective acoustic measures. The result is a set of perceptual regression models which showed the following: loudness level was the primary factor affecting sound quality perceptions for the telescoping, retraction, tilt up and tilt down sounds; sharpness was a secondary factor that influenced the sound quality perception of the tilt up and tilt down sounds.
Technical Paper

A Rapid Method to Predict the Effectiveness of Inhibited Engine Coolants in Aluminum Heat Exchangers

1980-06-01
800800
The galvanostatic polarization method was used to determine the pitting potentials of candidate wrought aluminum alloys in inhibited ethylene glycol engine coolants. It was shown that the relative value of the pitting potential is an excellent measure of the long-term effectiveness of the coolants in preventing spontaneous pitting and crevice attack in the aluminum heat exchangers. The long-term effectiveness was determined by metallographic examination of aluminum heat exchangers subjected to a four-month, 50,000 mile simulated service circulation test.
Journal Article

A Resonant Capacitive Coupling WPT-Based Method to Power and Monitor Seat Belt Buckle Switch Status in Removable and Interchangeable Seats

2019-04-02
2019-01-0465
In this study, we present an intelligent and wireless subsystem for powering and communicating with three sets of seat belt buckle sensors that are each installed on removable and interchangeable automobile seating. As automobile intelligence systems advance, a logical step is for the driver’s dashboard to display seat belt buckle indicators for rear seating in addition to the front seating. The problem encountered is that removable and interchangeable automobile seating outfitted with wired power and data links are inherently less reliable than rigidly fixed seating, as there is a risk of damage to the detachable power and data connectors throughout end-user seating removal/re-installation cycles.
Technical Paper

A Rule Based Design Process and an Evolutionary Architecture for the Vehicle Power Supply

1993-10-01
932864
This paper begins with a comparison of the automotive power supply and loads in the early 1950's (near the end of the six-volt era) to the modern counterpart in the early 1990's (possibly near the end of the 12-volt era). A typical power supply specification sheet is developed based on the in-vehicle performance characteristics. From this summary, two attributes are noted: first, the system voltage is not very stable and second, transient protection is limited. With this awareness and the knowledge that the power supply of the future will need architectural change, a review of the design assumptions using a total system view and a long term outlook is advanced. Using a rule based design process and employing available technology to enhance the power system architecture, a number of elements are proposed for consideration in new designs.
Technical Paper

A Simple Fan Model for Underhood Thermal Management Analyses

2002-03-04
2002-01-1025
This work presents a simple fan model that is based on the actuator disk approximation, and the blade element and vortex theory of a propeller. A set of equations are derived that require as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades. These equations are solved iteratively to obtain the body forces generated by the fan in the axial and circumferential directions. These forces are used as momentum sources in a CFD code to simulate the effect of the fan in an underhood thermal management simulation. To validate this fan model, a fan experiment was simulated. The model was incorporated into the CFD code STAR-CD and predictions were generated for axial and circumferential air velocities at different radial positions and at different planes downstream of the fan. The agreement between experimental measurements and predictions is good.
Journal Article

A Stochastic Bias Corrected Response Surface Method and its Application to Reliability-Based Design Optimization

2014-04-01
2014-01-0731
In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affect the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. This paper further investigates the Bayesian inference based model extrapolation method which is previously proposed by the authors, and provides a systematic and integrated stochastic bias corrected model extrapolation and robustness design process under uncertainty. A real world vehicle design example is used to demonstrate the validity of the proposed method.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

2019-04-02
2019-01-0201
The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

Acoustic Analysis of Vehicle Ribbed Floor

1997-05-20
971945
Ribbed floor panels have been widely applied in vehicle body structures to reduce interior noise. The conventional approach to evaluate ribbed floor panel designs is to compare natural frequencies and local stiffness. However, this approach may not result in the desired outcome of the reduction in radiated noise. Designing a “quiet” floor panel requires minimizing the total radiated noise resulting from vibration of the floor panel. In this study, the objective of ribbed floor panel design is to reduce the total radiated sound power by optimizing the rib patterns. A parametric study was conducted first to understand the effects of rib design parameters such as rib height, width, orientation, and density. Next, a finite element model of a simplified body structure with ribbed floor panel was built and analyzed. The structural vibration profile was generated using MSCINastran, and integrated with the acoustic boundary element model.
Technical Paper

Adhesion of Polyurethane Foam to Automotive Interior Thermoplastics

1995-02-01
950860
A method was adapted to measure the adhesion strength of polyurethane, semi-flexible foams to thermoplastic substrates. This method (lap-joint shear) was used to determine the effect of six (6) variables upon adhesion. These variables were: 1.) the type of substrate material, 2.) the type of polyurethane foam, 3.) the weight percentage of water in the polyurethane formulation (the degree to which the foam is blown and the chemical constituents), 4.) the chemical index of the polyurethane (the ratio of isocyanate to polyol resin), 5.) the surface roughness of the substrate, and 6.) the temperature of the polyurethane materials. Five (5) typical automotive interior thermoplastic substrates were studied: 1.) Polypropylene with preblended glass, 2.) Polycarbonate/ABS, 3.) PPO/HIPS with preblended glass, 4.) SMA with in-house dry blended glass, and 5.) SMA with preblended glass.
Journal Article

Admissible Shape Parameters for a Planar Quasi-Static Constraint Mode Tire Model

2017-08-17
2017-01-9683
Computationally efficient tire models are needed to meet the timing and accuracy demands of the iterative vehicle design process. Axisymmetric, circumferentially isotropic, planar, discretized models defined by their quasi-static constraint modes have been proposed that are parameterized by a single stiffness parameter and two shape parameters. These models predict the deformed shape independently from the overall tire stiffness and the forces acting on the tire, but the parameterization of these models is not well defined. This work develops an admissible domain of the shape parameters based on the deformation limitations of a physical tire, such that the tire stiffness properties cannot be negative, the deformed shape of the tire under quasi-static loading cannot be dominated by a single harmonic, and the low spatial frequency components must contribute more than higher frequency components to the overall tire shape.
Technical Paper

An Alternative Approach to Robust Design: A Vehicle Door Sealing System Example

1997-05-20
971924
Designing a high-quality door sealing system at low cost is an economic and technological engineering challenge. Robust design is a systematic and efficient technique to meet this challenge of design optimization for performance, quality, and cost. This technique, also called parameter design, focuses on making product and process designs insensitive (i.e. robust) to hard-to-control variations called noise factors. In this paper, we illustrate and apply the principles of robust design using a response model approach to a door sealing system design problem where vehicle interior sound is the primary response being studied. The Appendix contains a glossary of all italicized words for reference.
X