Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

A Comparison of Sacroiliac and Pubic Rami Fracture Occurrences in Oblique Side Impact Tests on Nine Post Mortem Human Subjects

2015-11-09
2015-22-0002
The WorldSID dummy can be equipped with both a pubic and a sacroiliac joint (S-I joint) loadcell. Although a pubic force criterion and the associated injury risk curve are currently available and used in regulation (ECE95, FMVSS214), as of today injury mechanisms, injury criteria, and injury assessment reference values are not available for the sacroiliac joint itself. The aim of this study was to investigate the sacroiliac joint injury mechanism. Three configurations were identified from full-scale car crashes conducted with the WorldSID 50th percentile male where the force passing through the pubis in all three tests was approximately 1500 N while the sacroiliac Fy / Mx peak values were 4500 N / 50 Nm, 2400 N / 130 Nm, and 5300 N / 150 Nm, respectively. These tests were reproduced using a 150 kg guided probe impacting Post Mortem Human Subjects (PMHS) at 8 m/s, 5.4 m/s and 7.5 m/s.
Technical Paper

A Naturalistic Driving Study for Lane Change Detection and Personalization

2024-04-09
2024-01-2568
Driver Assistance and Autonomous Driving features are becoming nearly ubiquitous in new vehicles. The intent of the Driver Assistant features is to assist the driver in making safer decisions. The intent of Autonomous Driving features is to execute vehicle maneuvers, without human intervention, in a safe manner. The overall goal of Driver Assistance and Autonomous Driving features is to reduce accidents, injuries, and deaths with a comforting driving experience. However, different drivers can react differently to advanced automated driving technology. It is therefore important to consider and improve the adaptability of these advances based on driver behavior. In this paper, a human-centric approach is adopted to provide an enriching driving experience. We perform data analysis of the naturalistic behavior of drivers when performing lane change maneuvers by extracting features from extensive Second Strategic Highway Research Program (SHRP2) data of over 5,400,000 data files.
Technical Paper

A Simulation-Based Study on the Improvement of Semi-Truck Roll Stability in Roundabouts

2016-09-27
2016-01-8038
This paper studies the effect of different longitudinal load conditions, roundabout cross-sectional geometry, and different semi-truck pneumatic suspension systems on roll stability in roundabouts, which have become more and more popular in urban settings. Roundabouts are commonly designed in their size and form to accommodate articulated heavy vehicles (AHVs) by evaluating such affects as off-tracking. However, the effect of the roadway geometry in roundabouts on the roll dynamics of semi-tractors and trailers are equally important, along with their entry and exit configuration. , Because the effect of the roundabout on the dynamics of trucks is further removed from the immediate issues considered by roadway planner, at times they are not given as much consideration as other roadway design factors.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

A Study of Knee Joint Kinematics and Mechanics using a Human FE Model

2005-11-09
2005-22-0006
Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Advanced Thermal Comfort in the Passenger Vehicle Compartment

2002-10-21
2002-21-0053
The demand for thermal comfort in the passenger vehicle compartment is infinite. As a result, technologically sophisticated options and features continue to be upgraded both in the hardware and software sectors. The personalization of comfort became a priority and led to improvements in automatic room temperature control techniques. Furthermore, the demand is rising not only for thermal comfort but also for cabin air quality improvement. Also, contributions to improve mileage and fuel consumption are a new request at the present time. This paper introduces the latest thermal comfort technologies in temperature and airflow controls as well as air quality improvement features. In addition, this paper introduces fuel consumption reduction technology employed by the A/C configuration of the TOYOTA HYBRID SYSTEM.
Technical Paper

An Approach for Compatibility Improvement Based on US Traffic Accident Data

2003-03-03
2003-01-0906
Traffic accidents in the United States were analyzed using FARS and NASS data. When classified according to vehicle body type and collision type, fatalities were most common in the case of (1) passenger car to passenger car frontal impacts, (2) passenger car to passenger car side impacts, (3) passenger car to LTV side impacts, (4) passenger car to truck frontal impacts, and (5) passenger car to LTV frontal impacts. Among these collisions, it was clearly confirmed that the occupants of a passenger car have a strong tendency to suffer injury when “the passenger car has a frontal impact with a heavier passenger car,” “the passenger car has a frontal impact with an LTV/SUV, truck,” and “the passenger car is side impacted by an LTV/SUV,” or the like. These examples should be recognized as clear cases of incompatibility. This paper will describe an approach which aim at improving compatibility. However, around 60% of occupants who suffer fatal injuries are not wearing a seat belt.
Technical Paper

Analysis of Occupant Kinematics of Rollover Buck Test

2016-04-05
2016-01-1516
Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
Journal Article

Analysis of Piston Friction in Internal Combustion Engine

2013-10-14
2013-01-2515
The purpose of this study is to analyze the piston skirt friction reduction effect of a diamond-like carbon (DLC)-coated wrist pin. The floating liner method and elasto-hydrodynamic lubrication (EHL) simulation were used to analyze piston skirt friction. The experimental results showed that a DLC-coated wrist pin reduced cylinder liner friction, and that this reduction was particularly large at low engine speeds and large pin offset conditions. Friction was particularly reduced at around the top and bottom dead center positions (TDC and BDC). EHL simulation confirmed that a DLC-coated wrist pin affects the piston motion and reduces the contact pressure between the piston skirt and cylinder liner.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

2016-04-05
2016-01-0124
Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Technical Paper

Automatic Transmission Control Based on Estimation of Sporty Driving Intention

2013-04-08
2013-01-0483
The purpose of this research is to develop an automatic shift control method that emulates an experienced driver's manual shift maneuver which enhances driving performance during sporty driving. Driver control maneuvers and vehicle behavior were observed throughout the process of braking, cornering, and accelerating out of a corner on a winding test track. Close correlations were found between driving maneuvers, longitudinal and lateral acceleration, and the selected engine speed. Based on the analysis, an index is proposed for estimating the intention of the driver to drive in a sporty manner. This index consists of the magnitude of acceleration in a friction circle and the maximum longitudinal acceleration restricted by the performance of the power train. An automatic transmission control based on the estimated driving intention was then developed to achieve the necessary and sufficient available force.
Journal Article

Benefit Estimation of a Lane Departure Warning System using ASSTREET

2012-04-16
2012-01-0289
It is known that the collisions caused by lane departure events account for range of percentages among the countries studied. To help prevent such collisions, the Lane Departure Warning (LDW) system has started to be introduced in production vehicles, but there is little research on its benefits and limitations so far. In this paper we performed an in-depth analysis of the collisions and driver-related essential variables for the lane-departure collision scenarios and demonstrated the benefit estimation process. The benefit of the LDW system is estimated by comparing lane departure events when the vehicle has no LDW, and how they change with the addition of LDW. The event without LDW was modeled in 5 phases: (1) before departure, (2) starting of the departure, (3) departed the lane, (4) at the impact with an object, and, (5) after the impact. “An extensive analysis was conducted of traffic crash data compiled by the Institute for Traffic Accident Research and Data Analysis (ITARDA).
Technical Paper

Biodiesel Stability and its Effects on Diesel Fuel Injection Equipment

2012-04-16
2012-01-0860
The effects of biodiesel oxidation stability on diesel fuel injection equipment (FIE) behavior were investigated using newly developed test rig and methodology. On the test rig, biodiesel blend fuels were circulated through a fuel tank and a common rail injection system. Fuel injected from typical diesel injectors was returned into the fuel tank to enhance the speed of fuel degradation. The results showed that injector deposits could be reproduced on a test rig. It was observed that injector body temperature increase accelerates the degradation of fuel and therefore gives earlier FIE failure. Fuel renewal could partially restore the injection quantity after complete failure at low injection pressure, thus showing a potential cleaning effect on injector deposits when refueling a car.
Journal Article

Biomechanical Response of the Human Face and Corresponding Biofidelity of the FOCUS Headform

2010-04-12
2010-01-1317
In order to evaluate a human surrogate, the human and surrogate response must be defined. The purpose of this study was to evaluate the response of cadaver subjects to blunt impacts to the frontal bone, nasal bone and maxilla. Force-displacement corridors were developed based on the impact response of each region. Variation in the force-displacement response of the cadaver subjects due to the occurrence of fracture and fracture severity was demonstrated. Additionally, impacts were performed at matched locations using the Facial and Ocular CountermeasUre Safety (FOCUS) headform. The FOCUS headform is capable of measuring forces imposed onto facial structures using internal load cells. Based on the tests performed in this study, the nasal region of the FOCUS headform was found to be the most sensitive to impact location. Due to a wide range in geometrical characteristics, the nasal impact response varied significantly, resulting in wide corridors for human response.
Technical Paper

CALVIN: Winner of the Fourth Annual Unmanned Ground Vehicle Design Competition

1997-02-24
970174
The Unmanned Ground Vehicle Competition is jointly sponsored by the SAE, the Association for Unmanned Vehicle Systems (AUVS), and Oakland University. College teams, composed of both undergraduate and graduate students, build autonomous vehicles that compete by navigating a 139 meter outdoor obstacle course. The course, which includes a sand pit and a ramp, is defined by painted continuous or dashed boundary lines on grass and pavement. The obstacles are arbitrarily placed, multi-colored plastic-wrapped hay bales. The vehicles must be between 0.9 and 2.7 meters long and less than 1.5 meters wide. They must be either electric-motor or combustion-engine driven and must carry a 9 kilogram payload. All computational power, sensing and control equipment must be carried on board the vehicle. The technologies employed are applicable in Intelligent Transportation Systems (ITS).
X