Refine Your Search

Topic

Author

Search Results

Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

A Study of Ground Simulation-Correlation between Wind-Tunnel and Water-Basin Tests of a Full-Scale Car

1989-02-01
890368
The aerodynamic properties of a full-scale car have been investigated in a wind-tunnel with upstream boundary layer suction, and in a water-basin where the car was rolling on the bottom. Measurements were carried out of the drag and lift forces, the static pressure distribution on the car body and the total head distribution between the car and the ground. By comparing data from the tunnel and the basin the ground simulation technique could be evaluated. The measured drag coefficients were found to be very similar in both facilities, while the absolute values of the lift coefficients were considerably higher in the tunnel. Lift differences due to configuration changes of the upperbody were essentially the same in the two facilities, while changes of the underbody caused smaller lift differences in the tunnel. In the project the water-basin technique was thoroughly investigated and proven.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model

2005-05-10
2005-01-2052
This paper describes how simultaneous numerical simulation of cooling performance and aerodynamic drag can be used to achieve attribute-balanced solutions. Traditionally at Volvo, evaluation of cooling performance and aerodynamics are done by separate teams using separate models and software. However, using this approach, any project changes can be evaluated in terms of their effect on cooling performance and drag from one single model. This enables the project to make decisions that are optimal in a more global perspective. If several proposals have similar levels of cooling performance, the proposal that yields the lowest overall drag can be chosen, thus reducing the fuel consumption of the vehicle. The first part of the paper discusses the prerequisites for the method in terms of boundary conditions, mesh and solution strategy. For the cooling performance part, the importance of high quality boundary conditions is reviewed.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Conceptual Design of Distributed by-Wire Systems

2002-03-04
2002-01-0271
A design method for ultra-dependable control-by-wire systems is presented here. With a top-down approach, exploiting the system's intrinsic redundancy combined with a scalable software redundancy, it is possible to meet dependability requirements cost-effectively. The method starts with the system's functions, which are broken down to the basic elements; task, sensor or actuator. A task graph shows the basic elements interrelationships. Sensor and actuator nodes form a non-redundant hardware architecture. The functional task-graph gives input when allocating software on the node architecture. Tasks are allocated to achieve low inter-node communication and transient fault tolerance using scalable software redundancy. Hardware is added to meet the dependability requirements. Finally, the method describes fault handling and bus scheduling. The proposed method has been used in two cases; a fly-by-wire aircraft and a drive-by-wire car.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Drag Reduction Mechanisms Due to Moving Ground and Wheel Rotation in Passenger Cars

2002-03-04
2002-01-0531
There are now several wind tunnel facilities within Europe for testing passenger cars with and without moving ground and rotating wheel conditions (henceforth abbreviated to MVG&RW conditions). Within these facilities, the drag of a car under MVG&RW conditions is typically less than the drag of a car under stationary ground and stationary wheel conditions. This drag difference has been found to vary from a decrease of about 25 drag counts to a small drag increase according to published sources. A drag reduction of 10 to 20 drag counts is more typical, however.
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Technical Paper

Fast and economic stiffness evaluation of mechanical joints

2003-10-27
2003-01-2751
Car body structures and the joints between beam members have a great impact on global vehicle stiffness. With the method presented in this paper it is possible to experimentally assess the stiffness of joints by a robust and economic means. The stiffness of a beam can easily be found experimentally just by cutting it in two and using the cross-sections to calculate the polar moment of inertia. When it comes to a joint, there are no formulae or explicit expressions describing its behavior. Therefore, measurement of its mechanical behavior has to be made. The dynamic joint method presented here does not need levers or a costly, rigid set-up, but an economical free-free set-up and cast-on weights. Furthermore, the same method can be emulated by FEM when a digital model exists.
Technical Paper

Field Method for Torsion Stiffness Measurement of Complete Vehicles

2003-10-27
2003-01-2754
The following paper describes how to measure the global torsional stiffness of a complete car under field-like conditions. All that's needed are lifting devices, two stands of equal height, three glide planes or equivalent, three scales and two inclinometers, a spirit level, some pieces of aluminum and a glue gun. The results from four measured cars are presented and a comparison is made with values obtained with laboratory equipment and data from manufacturers. The method is a fast and economic means to find the most interesting cars that then can be selected for measurement by traditional methods, giving the stiffness as a function of the vehicles long axis, and thus minimizes the cost of benchmarking. Time for measuring one car with all equipment readily available and with personnel having some experience of the method is about two hours. Only the sway bars have to be disconnected. Absolutely no damage to the measured car means that rented cars can be used.
Technical Paper

Galvanic Corrosion of Die Cast Magnesium Exposed on Vehicles and in Accelerated Laboratory Tests

2006-04-03
2006-01-0255
Galvanic corrosion between die cast AZ91D and AM60B and different fastener systems has been evaluated by exposure on trucks and in accelerated laboratory tests. The exposure time on the trucks was 3 years, corresponding to a mileage of about 300000 km. Samples were retracted and evaluated after 1 and 2 years exposure. Similar samples were also exposed to the Volvo Indoor Corrosion Test and the General Motors GM9540P-cycle B test. The correlation between the field data and the laboratory tests was evaluated, as was the sharp difference in the performance of the fastener systems in the two accelerated laboratory tests.
Technical Paper

Improving Subjective Assessment of Vehicle Dynamics Evaluations by means of Computer-Tablets as Digital Aid

2016-04-05
2016-01-1629
Vehicle dynamics development relies on subjective assessments (SA), which is a resource-intensive procedure requiring both expert drivers and vehicles. Furthermore, development projects becoming shorter and more complex, and increasing demands on quality require higher efficiency. Most research in this area has focused on moving from physical to virtual testing. However, SA remains the central method. Less attention has been given to provide better tools for the SA process itself. One promising approach is to introduce computer-tablets to aid data collection, which has proven to be useful in medical studies. Simple software solutions can eliminate the need to transcribe data and generate more flexible and better maintainable questionnaires. Tablets’ technical features envision promising enhancements of SA, which also enable better correlations to objective metrics, a requirement to improve CAE evaluations.
Technical Paper

Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car

2011-04-12
2011-01-0165
Efforts towards ever more energy efficient passenger cars have become one of the largest challenges of the automotive industry. This involves numerous different fields of engineering, and every finished model is always a compromise between different requirements. Passenger car aerodynamics is no exception; the shape of the exterior is often dictated by styling, engine bay region by packaging issues etcetera. Wheel design is also a compromise between different requirements such as aerodynamic drag and brake cooling, but as the wheels and wheel housings are responsible for up to a quarter of the overall aerodynamic drag on a modern passenger car, it is not surprising that efforts are put towards improving the wheel aerodynamics.
Technical Paper

Interior Sound of Today's Electric Cars: Tonal Content, Levels and Frequency Distribution

2015-06-15
2015-01-2367
When it comes to the acoustic properties of electric cars, the powertrain noise differs dramatically compared to traditional vehicles with internal combustion engines. The low frequency firing orders, mechanical and combustion noise are exchanged with a more high frequency whining signature due to electromagnetic forces and gear meshing, lower in level but subject to annoyance. Previous studies have highlighted these differences and also investigated relevant perception criteria in terms of psycho-acoustic metrics. However, investigations of differences between different kinds of electric and hybrid electric cars are still rare. The purpose of this paper was to present the distribution of tonal components in today's hybrid/electric vehicles. More specifically, the number of prominent orders, their maximum levels and frequency separation were analyzed for the most critical driving conditions. The study is based upon measurements made on 13 electrified cars on the market.
Journal Article

Investigation of Wheel Ventilation-Drag using a Modular Wheel Design Concept

2013-04-08
2013-01-0953
Passenger car fuel consumption is a constant concern for automotive companies and the contribution to fuel consumption from aerodynamics is well known. Several studies have been published on the aerodynamics of wheels. One area of wheel aerodynamics discussed in some of these earlier works is the so-called ventilation resistance. This study investigates ventilation resistance on a number of 17 inch rims, in the Volvo Cars Aerodynamic Wind Tunnel. The ventilation resistance was measured using a custom-built suspension with a tractive force measurement system installed in the Wheel Drive Units (WDUs). The study aims at identifying wheel design factors that have significant effect on the ventilation resistance for the investigated wheel size. The results show that it was possible to measure similar power requirements to rotate the wheels as was found in previous works.
Journal Article

Investigation of the Influence of Tyre Geometry on the Aerodynamics of Passenger Cars

2013-04-08
2013-01-0955
It is well known that wheels are responsible for a significant amount of the total aerodynamic drag of passenger vehicles. Tyres, and mostly rims, have been the subject of research in the automotive industry for the past years, but their effect and interaction with each other and with the car exterior is still not completely understood. This paper focuses on the use of CFD to study the effects of tyre geometry (tyre profile and tyre tread) on road vehicle aerodynamics. Whenever possible, results of the numerical computations are compared with experiments. More than sixty configurations were simulated. These simulations combined different tyre profiles, treads, rim designs and spoke orientation on two car types: a sedan and a sports wagon. Two tyre geometries were obtained directly from the tyre manufacturer, while a third geometry was obtained from our database and represents a generic tyre which covers different profiles of a given tyre size.
Technical Paper

Investigations of the Rear-End Flow Structures on a Sedan Car

2016-04-05
2016-01-1606
The aerodynamic drag, fuel consumption and hence CO2 emissions, of a road vehicle depend strongly on its flow structures and the pressure drag generated. The rear end flow which is an area of complex three-dimensional flow structures, contributes to the wake development and the overall aerodynamic performance of the vehicle. This paper seeks to provide improved insight into this flow region to better inform future drag reduction strategies. Using experimental and numerical techniques, two vehicle shapes have been studied; a 30% scale model of a Volvo S60 representing a 2003MY vehicle and a full scale 2010MY S60. First the surface topology of the rear end (rear window and trunk deck) of both configurations is analysed, using paint to visualise the skin friction pattern. By means of critical points, the pattern is characterized and changes are identified studying the location and type of the occurring singularities.
X