Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Identification of the Detachment Point on the ACHEON Thrust-Vectoring Nozzle

2015-09-15
2015-01-2464
Thrust vectoring is an interesting propulsion solution in aeronautic applications due to its fast response, improving aircraft's performance for take-off, landing and flight, and enabling Short/Vertical Take-Off and Landing (S/VTOL). In this context, an attempt to design a radically new concept of thrust vectoring nozzle is in current development. This novel nozzle, called ACHEON, bases the jet deviation control on the interaction of two primary jets of different velocities, where the one with higher velocity entrains the one with lower velocity. Two cylindrical walls are positioned after the two air jets mixing. If the inlet conditions are not symmetric, the Coanda effect on the walls forces the resulting air jet to divert from the symmetry axis. This paper shows the experimental pressure distribution along the Coanda wall for different inlet.
Technical Paper

Mathematical Modeling of Coanda Effect

2013-09-17
2013-01-2195
This paper presents a theoretical model of Coanda attachment mechanisms and laws of the Coanda effect. In this paper, it has been considered a very conventional setup in order to define by a theoretical analysis a mathematical model of the Coanda adhesion. It has been produced a complete mathematical model which could allow simple engineering calculations through an effective solutions of the differential equations of the system. A parametric model has defined as a function of main cinematic and geometric parameters. The final model relates to three fundamental parameters: outlet section, Coanda surfaces radius and inlet velocities. Turbulent and laminar models have defined. Validation through a large CDF campaign has produced in a regime of stream velocities from 5 to 40 m/s with good results.
Journal Article

Structural Analysis of an Engine Chassis for a Disc-Shaped Airship with Thrust Vector Control

2015-01-01
2014-01-9102
This paper presents a structural analysis of an engine chassis for a disc-shaped airship demonstrator. The objective was to verify such design solutions for application in the European Union's MAAT (Multibody Advanced Airship for Transport) project. In many airship designs, the engines are attached to the airship frame, located inside the balloon, in order to allow for thrust vector control. These airships have aerodynamic control surfaces to improve maneuverability. For the demonstrator, three engines are considered, with a non-rigid internal structure for their attachment. The engines are located on a horizontal plane (the symmetry plane of the balloon), with two lateral engines and one in front of the balloon. The chassis installation allows the engines to be attached either directly to the exterior envelope by using Kevlar connections, or to the central structural pipe. This chassis design has a simple construction, compared to typical structures addressed in the literature.
X