Refine Your Search

Topic

Search Results

Technical Paper

0D/1D Turbulent Combustion Model Assessment from an Ultra-Lean Spark Ignition Engine

2019-03-25
2019-01-1409
This paper focuses on an assessment of predictive combustion model using a 0D/1D simulation tool under high load, different excess air ratio λ , and different combustion stabilities (based on coefficient of variation of indicated mean effective pressure COVimep). To consider that, crank angle resolved data of experimental pressure of 500 cycles are recorded under engine speed 1000 RPM and 2000 RPM, wide-open throttle, and λ=1.0, 1.42, 1.7, and 2.0. Firstly, model calibration is conducted using 18 cases at 2000 RPM using 500 cycle-averaged in-cylinder pressure to find optimized model constants. Then, the model constants are unchanged for other cases. Next, different cycle-averaged pressure data are used as inputs in the simulation based on the COVimep for studying sensitivity of the turbulent model constants. The simulation is conducted using 1D simulation software GT-Power.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall ---

2014-04-01
2014-01-1073
The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2.
Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---

2014-04-01
2014-01-1066
The objective of this work is to develop a numerical simulation model of spark ignited (SI) engine combustion and thereby to investigate the possibility of reducing heat losses and improving thermal efficiency by applying a low thermal conductivity and specific heat material, so-called heat insulation coating, to the combustion chamber wall surface. A reduction in heat loss is very important for improving SI engine thermal efficiency. However, reducing heat losses tends to increase combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model made it possible to investigate the interaction of the heat losses and knock occurrence and to optimize spark ignition timing to achieve higher efficiency. Part 2 of this work deals with the investigations on the effects of heat insulation coatings applied to the combustion chamber wall surfaces on heat losses, knock occurrence and thermal efficiency.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics

2002-05-06
2002-01-1750
A numerical study was carried out to investigate combustion characteristics of a dual-fuel gas diesel engine, using a multi-dimensional model combined with detailed chemical kinetics, including 43 chemical species and 173 elementary reactions. In calculations, the effects of initial temperature, EGR ratios on ignition, and combustion were examined. The results indicated EGR combined with intake preheating can favorably reduced NOx and THC emissions simultaneously. This can be explained by the fact that combustion mechanism is changed from flame propagation to HCCl like combustion.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined with Detailed Kinetics

2003-05-19
2003-01-1939
Natural gas pre-mixture is ignited by a small amount of pilot fuel in the dual fuel engine. In this paper, numerical studies were carried out to investigate the combustion and exhaust gas emissions formation process of this engine type by using a multi dimensional model combined with the detailed chemical kinetics including 57 chemical species and 290 elementary reactions. In calculation, the effect of the pre-mixture concentration on combustion was examined. The result indicated that the increased concentration of natural gas could improve the burning fraction and THC, CO emissions due to the increased pre-mixture consumption rate and the cylinders gas temperature.
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

Computations and Experiments for Clarifying Compression Level and Stability of Colliding Pulsed Supermulti-Jets in a Piston-Less Single-Point Autoignition Engine

2016-10-17
2016-01-2331
In recent years, a new type of engine (Fugine) based on the colliding of pulsed supermulti-jets was proposed by us, which indicates the potential for attaining very high thermal efficiencies and also less combustion noise. A prototype engine with eight nozzles for injecting octagonal pulsed supermulti-jets, which was developed with a low-cost gasoline injector and a double piston system, showed high thermal efficiency comparable to that of diesel engines and also less combustion noise comparable to that of traditional spark-ignition gasoline engines. Another type of prototype piston-less engine having fourteen bioctagonal nozzles was also developed and test results confirmed the occurrence of combustion, albeit it was unstable. In this work, time histories of pressure were measured in the combustion chamber of the piston-less prototype engine under a cold flow condition without combustion in order to examine the compression level obtained with the colliding supermulti-jets.
Technical Paper

Computations and Experiments of Single-Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets, Single Piston and Rotary Valve

2016-10-17
2016-01-2334
A new engine concept (Fugine) based on colliding pulsed supermulti-jets was proposed in recent years, which is expected to provide high thermal efficiencies over 50% and less combustion noise. Theoretical analyses indicate a high potential for thermal efficiency over 60%. Three types of prototype engines have been developed. The first prototype engine based only on the colliding of pulsed supermulti-jets with fourteen nozzles has no piston compression, while the second type equipped with a low-cost gasoline injector in the suction port has a double piston system and eight jet nozzles. Combustion experiments conducted on the second prototype gasoline engine show high thermal efficiency similar to that of traditional diesel engines and lower combustion noise comparable to that of traditional spark-ignition gasoline engines.
Technical Paper

Development and Improvement of an Ultra Lightweight Hybrid Electric Vehicle

2003-03-03
2003-01-2011
An experimental ultra lightweight compact vehicle named “the Waseda Future Vehicle” has been designed and developed, aiming at a simultaneous achievement of low exhaust gas emissions, high fuel economy and driving performance. The vehicle is powered by a dual-type hybrid system having a SI engine, electric motor and generator. A high performance lithium-ion battery unit is used for electricity storage. A variety of driving cycles were reproduced using the hybrid vehicle on a chassis dynamometer. By changing the logics and parameters in the electronic control unit (ECU) of the engine, a significant improvement in emissions was possible, achieving a very high fuel economy of 34 km/h at the Japanese 10-15 drive mode. At the same time, a numerical simulation model has been developed to predict fuel economy. This would be very useful in determining design factors and optimizing operating conditions in the hybrid power system.
Journal Article

Effect of Ethanol on Knock in Spark Ignition Gasoline Engines

2008-09-09
2008-32-0020
This study examines the effects of ethanol content on engine performances and the knock characteristics in spark ignition gasoline engine under various compression ratio conditions by cylinder pressure analysis, visualization and numerical simulation. The results confirm that increasing the ethanol content provides for greater engine torque and thermal efficiency as a result of the improvement of knock tolerance. It was also confirmed that increasing the compression ratio together with increasing ethanol content is effective to overcome the shortcomings of poor fuel economy caused by the low calorific value of ethanol. Further, the results of one dimensional flame propagation simulation show that ethanol content increase laminar burning velocity. Moreover, the results of visualization by using a bore scope demonstrate that ethanol affects the increase of initial flame propagation speed and thus helps suppress knock.
Technical Paper

Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions

2021-09-21
2021-01-1165
The purpose of the present study is to find a way to extend a combustion stability limit for diluted combustion in a spark-ignition (SI) gasoline engine which has a high compression ratio. This paper focuses on partial oxidation in an unburned mixture which is observed in the high compression engine and clarifies the effect of partial oxidation in an unburned mixture on the behavior of a flame stretch and the extinction limit. The behavior of the flame stretch was simulated using the detailed chemical kinetics simulation with the opposed-flow flame reactor model. In the simulation, the reactants which have various reaction progress variables were examined to simulate the flame stretch and extinction under the partial oxidation conditions. The mixtures were also diluted by complete combustion products which represent exhaust gas recirculation (EGR).
Technical Paper

Effects of Pre-Chamber Internal Shape on CH4-H2 Combustion Characteristics Using Rapid-Compression Expansion Machine Experiments and 3D-CFD Analysis

2023-08-28
2023-24-0043
Pre-chamber (PC) natural gas and hydrogen (CH4-H2) combustion can improve thermal efficiency and greenhouse gas emissions from decarbonized stationary engines. However, the engine efficiency is worsened by prolonged combustion duration due to PC jet velocity extinction. This work investigates the impact of cylindrical PC internal shapes to increase its jet velocity and shorten combustion duration. A rapid compression and expansion machine (RCEM) is used to investigate the combustion characteristics of premixed CH4 gas. The combustion images are recorded using a high-speed camera of 10,000 fps. The experiments are conducted using two types of long PC shapes with diameters φ=4 mm (hereafter, longφ4) and 5 mm (hereafter, long φ5), and their combustions are compared against a short PC shape (φ=12 mm). For all designs of the PC shapes, the PC holes are 6 with 2 mm in diameter.
Technical Paper

Experimental and 3D-CFD Analysis of Synthetic Fuel Properties on Combustion and Exhaust Gas Emission Characteristics in Heavy-Duty Diesel Engines

2023-08-28
2023-24-0052
Synthetic fuels can significantly improve the combustion and emission characteristics of heavy-duty diesel engines toward decarbonizing heavy-duty propulsion systems. This work analyzes the effects of engine operating conditions and synthetic fuel properties on spray, combustion, and emissions (soot, NOx) using a supercharging single-cylinder engine experiment and KIVA-4 code combined with CHEMKIN-II and in-house phenomenological soot model. The blended fuel ratio is fixed at 80% diesel and 20% n-paraffin by volume (hereafter DP). Diesel, DP1 (diesel with n-pentane C5H12), DP2 (diesel with n-hexane C6H14), and DP3 (diesel with n-heptane C7H16) are used in engine-like-condition constant volume chamber (CVC) and engine experiments. Boosted engine experiments (1080 rpm, common-rail injection pressure 160 MPa, multi-pulse injection) are performed using the same DP fuel groups under various main injection timings, pulse-injection intervals, and EGR = 0-40%.
Technical Paper

Fundamental Combustion Experiments of a Piston-Less Single-Point Autoignition Gasoline Engine Based on Compression Due to Colliding of Pulsed Supermulti-Jets

2016-10-17
2016-01-2337
Computational and theoretical analyses for a new type of engine (Fugine), which was proposed by us based on the colliding of pulsed supermulti-jets, indicate a potential for very high thermal efficiencies and also less combustion noise. Three types of prototype engines were developed. One of them has a low-cost gasoline injector installed in the suction port and a double piston system in which eight octagonal supermulti-jets are injected and collide. Combustion experiments conducted on the prototype gasoline engine show high thermal efficiency comparable to that of diesel engines and less combustion noise comparable to that of traditional spark-ignition gasoline engines. This paper presents some combustion experiments of one of the other piston-less prototype engines having bi-octagonal pulsed multi-jets injected from fourteen nozzles.
Technical Paper

High Thermal Efficiency Obtained with a Single-Point Autoignition Gasoline Engine Prototype Having Pulsed Supermulti-Jets Colliding in an Asymmetric Double Piston Unit

2016-10-17
2016-01-2336
A single-point autoignition gasoline engine (Fugine) proposed by us previously has a strongly asymmetric double piston unit without poppet valves, in which pulsed multi-jets injected from eight suction nozzles collide around the combustion chamber center. Combustion experiments conducted on this engine at a low operating speed of 2000 rpm using gasoline as the test fuel under lean burn conditions showed both high thermal efficiency comparable to that of diesel engines and silent combustion comparable to that of conventional spark-ignition gasoline engines. This gasoline engine was tested with a weak level of point compression generated by negative pressure of about 0.04 MPa and also at an additional mechanical homogeneous compression ratio of about 8:1 without throttle valves. After single-point autoignition, turbulent flame propagation may occur at the later stage of heat release.
Technical Paper

Improvement of Combustion in a Dual Fuel Natural Gas Engine with Half the Number of Cylinders

2003-05-19
2003-01-1938
A dual fuel natural gas diesel engine suffers from remarkably lower thermal efficiency and higher THC, CO emissions at lower load because of its lower burned mass fraction caused by the lean pre-mixture. To overcome this inevitable disadvantage at lower load, two methods of reducing the number of operating cylinders were examined. One method was to use the two cylinders operation while the second one was to use the quasi-two cylinders operation. As a result, it was found that the unburned hydrocarbons and CO emissions could be favorably reduced with the improvement of thermal efficiency by reducing the number of cylinders to half for a dual fuel natural gas diesel engine. Moreover, it was also found that the quasi-two cylinders operation could improve the torque fluctuation more compared to the two cylinders operation.
Technical Paper

Mixture formation and combustion characteristics of directly injected LPG spray

2003-05-19
2003-01-1917
It has been recognized that alternative fuels such as liquid petroleum gas (LPG) has less polluting combustion characteristics than diesel fuel. Direct-injection stratified-charge combustion LPG engines with spark-ignition can potentially replace conventional diesel engines by achieving a more efficient combustion with less pollution. However, there are many unknowns regarding LPG spray mixture formation and combustion in the engine cylinder thus making the development of high-efficiency LPG engines difficult. In this study, LPG was injected into a high pressure and temperature atmosphere inside a constant volume chamber to reproduce the stratification processes in the engine cylinder. The spray was made to hit an impingement wall with a similar profile as a piston bowl. Spray images were taken using the Schlieren and laser induced fluorescence (LIF) method to analyze spray penetration and evaporation characteristics.
Technical Paper

Numerical Methods on VVA and VCR Concepts for Fuel Economy Improvement of a Commercial CNG Truck

2020-09-15
2020-01-2083
Natural gas has been used in spark-ignition (SI) engines of natural gas vehicles (NGVs) due to its resource availability and stable price compared to gasoline. It has the potential to reduce carbon monoxide emissions from the SI engines due to its high hydrogen-to-carbon ratio. However, short running distance is an issue of the NGVs. In this work, methodologies to improve the fuel economy of a heavy-duty commercial truck under the Japanese Heavy-Duty Driving Cycle (JE05) is proposed by numerical 1D-CFD modeling. The main objective is a comparative analysis to find an optimal fuel economy under three variable mechanisms, variable valve timing (VVT), variable valve actuation (VVA), and variable compression ratio (VCR). Experimental data are taken from a six-cylinder turbocharged SI engine fueled by city gas 13A. The 9.83 L production engine is a CR11 type with a multi-point injection system operated under a stoichiometric mixture.
X