Refine Your Search

Topic

Author

Search Results

Technical Paper

A Faster Algorithm for the Calculation of the IMEP

2000-10-16
2000-01-2916
The Indicated Mean Effective Pressure (IMEP) is a very important engine parameter, giving significant information about the quality of the cycle that transforms heat into mechanical work. For this reason, modern data acquisition systems display, on line, the cylinder pressure variation together with the corresponding IMEP. The paper presents a very simple algorithm for the calculation of IMEP, based on the correlation between IMEP and the gas pressure torque. It was found that that the IMEP may be calculated by a very simple formula involving only two harmonic components of the cylinder pressure variation. The computation of the two harmonic components is very easily performed because it does not involve the calculation of an average pressure and the cylinder volume variation. The method was experimentally validated showing differences less than 0.2% with respect to the IMEP calculated by the traditional method.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Technical Paper

Active Control of Vibration and Noise in Automotive Timing Chain Drives

1997-02-24
970501
Vibration and noise are generally considered to be the major problems in power transmission chains. This paper presents an adaptive, active control strategy for the reduction of vibration in automotive timing chain drives and examines the effects of the active control on noise reduction. Experimental results show that the average vibration amplitude is diminished by as much as 90% under low to moderate tension conditions, and the chain noise is reduced by about 3 dB. The experimental apparatus has low cost and is readily applicable to an industrial environment.
Technical Paper

Characterization of Multi-hole Spray and Mixing of Ethanol and Gasoline Fuels under DI Engine Conditions

2010-10-25
2010-01-2151
Because of their robustness and cost performance, multi-hole gasoline injectors are being adopted as the direct injection (DI) fuel injector of choice as vehicle manufacturers look for ways to reduce fuel consumption without sacrificing power and emission performance. To realize the full benefits of direct injection, the resulting spray needs to be well targeted, atomized, and appropriately mixed with charge air for the desirable fuel vapor concentration distributions in the combustion chamber. Ethanol and ethanol-gasoline blends synergistically improve the turbo-charged DI gasoline performance, especially in down-sized, down-sped and variable-valve-train engine architecture. This paper presents the spray imaging results from two multi-hole DI gasoline injectors with different design, fueled with pure ethanol (E100) or gasoline (E0), under homogeneous and stratified-charge conditions that represent typical engine operating points.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Cycle-by-Cycle Analysis of HC Emissions During Cold Start of Gasoline Engines

1995-10-01
952402
A cycle-by-cycle analysis of HC emissions from each cylinder of a four-stroke V-6, 3.3 L production engine was made during cold start. The HC emissions were measured in the exhaust port using a high frequency flame ionization detector (FID). The effect of the initial startup position of the piston and valves in the cycle on combustion and HC emissions from each cylinder was examined. The mass of fuel injected, burned and emitted was calculated for each cycle. The equivalence ratio of the charge in the firing cycles was determined. The analysis covered the first 120 cycles and included the effect of engine transients on HC emissions.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
Technical Paper

Direct Visualization of High Pressure Diesel Spray and Engine Combustion

1999-10-25
1999-01-3496
An experimental study was carried out to visualize the spray and combustion inside an AVL single-cylinder research diesel engine converted for optical access. The injection system was a hydraulically-amplified electronically-controlled unit injector capable of high injection pressure up to 180 MPa and injection rate shaping. The injection characteristics were carefully characterized with injection rate meter and with spray visualization in high-pressure chamber. The intake air was supplied by a compressor and heated with a 40kW electrical heater to simulate turbocharged intake condition. In addition to injection and cylinder pressure measurements, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process. The results showed that optically accessible engines provide very useful information for studying the diesel combustion conditions, which also provided a very critical test for diesel combustion models.
Technical Paper

Dynamic Human Ankle Response to Inversion and Eversion

1993-11-01
933115
There are many mechanisms for ankle injury to front seat occupants involved in automotive impacts. This study addresses injuries to the ankle joint involving inversion or eversion, in particular at high rates of loading such as might occur in automotive accidents. Injuries included unilateral malleolar fractures and ligament tears, and talus and calcaneous avulsions. Twenty tests have been performed so far, two of them using Hybrid III lower leg and the rest using cadaveric specimens. The specimens were loaded dynamically on the bottom of the foot via a pneumatic cylinder in either an inversion or eversion direction at fixed dorsiflexion and plantarflexion angles. The applied force and accelerations have been measured as well as all the reaction forces and moments. High-speed film was used to obtain the inversiordeversion angle of the foot relative to the tibia and for following ligament stretch.
Technical Paper

Effect of Biodiesel and its Blends on Particulate Emissions from HSDI Diesel Engine

2010-04-12
2010-01-0798
The effect of biodiesel on the Particulate emissions is gaining significant attention particularly with the drive for the use of alternative fuels. The particulate matter (PM), especially having a diameter less than 50 nm called the Nanoparticles or Nucleation mode particles (NMPs), has been raising concerns about its effect on human health. To better understand the effect of biodiesel and its blends on particulate emissions, steady state tests were conducted on a small-bore single-cylinder high-speed direct-injection research diesel engine. The engine was fueled with Ultra-Low Sulfur Diesel (ULSD or B-00), a blend of 20% soy-derived biodiesel and 80% ULSD on volumetric basis (B-20), B-40, B-60, B-80 and 100% soy-derived biodiesel (B-100), equipped with a common rail injection system, EGR and swirl control systems at a load of 5 bar IMEP and constant engine speed of 1500 rpm.
Technical Paper

Effect of Using Biodiesel (B-20) and Combustion Phasing on Combustion and Emissions in a HSDI Diesel Engine

2011-04-12
2011-01-1203
The use of biodiesel and its blends with ultra low sulfur diesel (ULSD) is gaining significant importance due to its ability to burn in conventional diesel engines with minor modifications. However the chemical and physical properties of biodiesel are different compared to the conventional ULSD. These differences directly impact the injection, spray formation, auto ignition and combustion processes which in turn affect the engine-out emissions. To understand the effect of fueling with B-20, tests were conducted on a single cylinder 0.42L direct injection research diesel engine. The engine is equipped with a common rail injection system, variable EGR and swirl control systems and was operated at a constant engine speed of 1500 rpm and 3 bar IMEP to simulated turbocharged conditions. Injection timing and duration were adjusted with B-20 at different locations of peak premixed combustions (LPPC) and two different swirl ratios to achieve 3 bar IMEP.
Technical Paper

Effects of B20 Fuel and Catalyst Entrance Section Length on the Performance of UREA SCR in a Light-Duty Diesel Engine

2010-04-12
2010-01-1173
The current study focused on the effects B20 fuel (20% soybean-based biodiesel) and SCR entrance shapes on a light-duty, high-speed, 2.8L common-rail 4-cylinder diesel engine, at different exhaust temperatures. The results indicate that B20 has less deNOX efficiency at low temperature than ULSD, and that N₂O emission need to be characterized as well as NH₃ slip. If a mixer and enough mixing length are used, longer divergence section does not improve the deNOX efficiency significantly under the speed ranges tested.
Technical Paper

Experimental Determination of the Instantaneous Frictional Torque in Multicylinder Engines

1996-10-01
962006
An experimental method for determining the Instantaneous Frictional Torque (IFT) using pressure transducers on every cylinder and speed measurements at both ends of the crankshaft is presented. The speed variation measured at one end of the crankshaft is distorted by torsional vibrations making it difficult to establish a simple and direct correlation between the acting torque and measured speed. Using a lumped mass model of the crankshaft and modal analysis techniques, the contributions of the different natural modes to the motion along the crankshaft axis are determined. Based on this model a method was devised to combine speed measurements made at both ends of the crankshaft in such a way as to eliminate the influence of torsional vibrations and obtain the equivalent rigid body motion of the crankshaft. This motion, the loading torque and the gas pressure torque are utilized to determine the IFT.
Technical Paper

Experimental Investigation of the Strains and Stresses in the Cylinder Block of a Marine Diesel Engine

2000-03-06
2000-01-0520
The cylinder block of a high-speed marine diesel engine is a complex structure subjected to a complex loading. The design optimization of the cylinder block requires a reliable Finite Element Model (FEM), capable to predict, with a reasonable accuracy, the actual strains and stresses. The experimental investigation presented in the paper is meant to provide the necessary information for a better estimation of the boundary conditions and the validation of the FEM of the cylinder block. In order to obtain an image of the stress field in the cylinder block, a system of 10 strain gauge rosettes have been placed at significant locations on the cylinder block. The temperature at the location of the rosettes was measured with an optical pyrometer and a method has been developed to calculate this temperature using the measured strain. A fairly good agreement was obtained between the measured and the calculated temperatures during the cooling of the engine.
Technical Paper

Experimental Study for the Effect of Fuel Properties on the Ion Current, Combustion, and Emission in a High Speed Diesel Engine

2014-04-01
2014-01-1263
This paper presents experimental study on the impact of using fuels with different physical and chemical properties in a diesel engine. Research is driven towards finding an alternative or extender to the conventional diesel fuel for compression ignition engines. Such alternative fuels have wide ranges of physical and chemical properties which are not suitable for CI engines. Advanced injection systems and control strategies in modern diesel engines permit operation to be extended to a wider range of fuels. Therefore, experimental investigation to understand the effects of different fuels on engine performance, combustion, and emissions are necessary. The study covers the effect of using different fuels such as JP-8 and Sasol-IPK on a modern automotive diesel engine. The engine used in this study is a 2.0L, 4 cylinders, direct injection diesel engine fitted with piezo-driven injectors.
Journal Article

Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

2014-04-01
2014-01-1376
This paper presents the results of an experimental investigation on a single cylinder engine to validate a two-component JP-8 surrogate. The two-component surrogate was chosen based on a previous investigation where the key properties, such as DCN, volatility, density, and lower heating value, of the surrogate were matched with those of the target JP-8. The matching of the auto-ignition, combustion, and emission characteristics of the surrogate with JP-8 was investigated in an actual diesel engine environment. The engine tests for the validation of the surrogate were conducted at an engine speed of 1500 rpm, a load of 3 bar, and different injection timings. The results for the cylinder gas pressure, ignition delay period, rate of heat release, and the CO, HC, and NOx emissions showed a good match between the surrogate and the target JP-8. However, the engine-out particulate matter for the surrogate was lower than that for the JP-8 at all tested conditions.
Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
Technical Paper

Finite Element Modeling of Direct Head Impact

1993-11-01
933114
A 3-D finite element human head model has been developed to study the dynamic response of the human head to direct impact by a rigid impactor. The model simulated closely the main anatomical features of an average adult head. It included the scalp, a three-layered skull, cerebral spinal fluid (CSF), dura mater, falx cerebri, and brain. The layered skull, cerebral spinal fluid, and brain were modeled as brick elements with one-point integration. The scalp, dura mater, and falx cerebri were treated as membrane elements. To simulate the strain rate dependent characteristics of the soft tissues, the brain and the scalp were considered as viscoelastic materials. The other tissues of the head were assumed to be elastic. The model contains 6080 nodes, 5456 brick elements, and 1895 shell elements. To validate the head model, it was impacted frontally by a cylinder to simulate the cadaveric tests performed by Nahum et. al. (8).
Technical Paper

Friction Losses in Multi-Cylinder Diesel Engines

2000-03-06
2000-01-0921
This paper presents a global friction model of a diesel engine. The model accounts for the individual contributions of the main components of the mechanical losses and the influence of specific design and operating parameters on the mechanical losses. The main components considered in the model are: the piston-ring assembly, the valve train, the bearings and auxiliaries (injection pump, oil pump and coolant pump). For each of these components, the model was developed based on geometric parameters, operating conditions and the physics governing the friction. The individual models were assembled in a global friction model of a multicylinder diesel engine, and a computer code was developed to simulate the total mechanical losses of the engine. The experimental validation of the model was obtained by comparing the simulated crankshaft's speed variation with the instantaneous speed measured by a shaft encoder.
X