Refine Your Search

Topic

Search Results

Technical Paper

3-D Numerical Simulation of Transient Heat Transfer among Multi-Component Coupling System in Internal Combustion Chamber

2008-06-23
2008-01-1818
A 3-D numerical analysis model of transient heat transfer among the multi-component coupling system in combustion chamber of internal combustion engine has been developed successfully in the paper. The model includes almost all solid components in combustion chamber, such as piston assembly, cylinder liner, cylinder head gasket, cylinder head, intake valves and exhaust valves, etc. With two different coupling heat transfer modes, one is the lubricant film heat conduction between two moving components, another is the contact heat conduction between two immovable solid components, and with the direct coupled-field analysis method of FEM, the heat transfer relation among the components is established. The simulation result dedicates the transient heat transfer process among the components such as moving piston assembly and cylinder liner, moving valves and cylinder head. The effect of cylinder head gasket on heat transfer among the components is also studied.
Technical Paper

A Layered Active Balance System for Lithium-ion Power Battery Based on Auxiliary Power

2022-08-30
2022-01-1132
In this paper, a high-efficiency and low-cost lithium-ion battery pack active balance system is designed. It adopts a distributed structure and consists of three parts: auxiliary power module, one-way isolated DC/DC conversion module, and a battery group. The battery single cells in the battery pack are layered and divided into m battery groups in total, and each battery group is composed of n battery single cells. Each battery group is connected to an isolated DC/DC conversion module, and all the conversion modules are connected in parallel with the auxiliary power. Taking the SOC average value of the all-single cells in one battery group as the balancing variable, the auxiliary power is controlled to charge the battery group with the lower SOC average value, so that the difference of the SOC average value of all battery groups is within the set threshold range, so as to realize the active balance of each battery group.
Technical Paper

A Method of Battery State of Health Prediction based on AR-Particle Filter

2016-04-05
2016-01-1212
Lithium-ion battery plays a key role in electric vehicles, which is critical to the system availability. One of the most important aspects in battery managements systems(BMS) in electric vehicles is the stage of health(SOH) estimation. The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. The classical approach of current integration(coulomb counting) can't get the accurate values because of accumulative error. In order to provide timely maintenance and replacements of electric vehicles, several estimation approaches have been proposed to develop a reliable and accurate battery state of health estimation. A common drawback of previous algorithm is that the computation quantity is huge and not quite accurate, that is updated partially in this study.
Journal Article

A Novel Indirect Health Indicator Extraction Based on Charging Data for Lithium-Ion Batteries Remaining Useful Life Prognostics

2017-06-17
2017-01-9078
In order to solve the environmental pollution and energy crisis, Electric Vehicles (EVs) have been developed rapidly. Lithium-ion (Li-ion) battery is the key power supply equipment for EVs, and the scientific and accurate prediction of its Remaining Useful Life (RUL) has become a hot topic in the field of new energy research. The internal resistance and capacity are often used to characterize the Li-ion battery State of Health (SOH) from which RUL is obtained. However, in practical applications, it is difficult to obtain internal resistance and capacity information by using the non-intrusive measurement method. Therefore, it is necessary to extract the measurable parameters to characterize the degradation of Li-ion battery. At present, the methods of extracting health indicators based on measurable parameters have gained preliminary results, but most of them are derived from the Li-ion battery discharging data.
Technical Paper

A Strategy to Recycle the Braking Energy of HEV with EMB

2014-09-28
2014-01-2542
Recovering the braking energy and reusing it can significantly improve the fuel economy of hybrid electric vehicles (HEVs).The battery ability of recovering electricity limits the improvement of the regenerative braking performance. As one way to solve this problem, the technology of brake-by-wire can be adopted in the HEVs to use the recovery dynamically. The use of high-power electrical equipment, such as electromechanical brake (EMB), is working in the form of brake-by-wire. Due to the nature of EMB, there exists an obvious coupling relationship between the energy flow and brake force distribution. In this paper, a brake force distribution controller is proposed in HEV with EMB, which can maximize braking energy recovery, compared with the conventional distribution control without EMB. Meanwhile, an energy flow strategy working with the distribution controller is designed, which is less limited to the performance of the battery.
Technical Paper

A Study on Heat Dissipation of Electric Vehicle Motor Based on Heat-Pipe Heat Transfer Analysis

2021-04-06
2021-01-0208
With the increasingly serious problems of environmental pollution and energy shortage, electric vehicles have a promising future. As a core component of electric vehicles, the drive motor is developing towards high power density of which remains temperature rise problems, which affects the performance, efficiency and service life of the drive motor. Liquid cooling has high energy consumption and poor reliability. The heat-pipe has excellent heat conduction and temperature uniformity capabilities. Therefore, this paper proposes a heat pipe-based drive motor heat dissipation system to make the heat-pipe act on the inside of the motor to reach a specified range of driving conditions. The drive motor can better dissipate heat through the heat-pipe. Firstly, analysis of the internal heat generation mechanism of the motor, heat transfer characteristics of the heat-pipe and the heat-pipe layout plan was established.
Technical Paper

A Two-Stage Pressure Boost Device for Relieving Turbocharger Delay Effect by Means of Utilizing Engine Waste Heat

2015-09-29
2015-01-2790
Turbochargers can improve vehicle dynamic performance and fuel economy and are applied widely nowadays. Due to the existence of turbocharger delay effect, acceleration delay and insufficient combustion are its disadvantages. By collecting high pressure gas which generates from the inertia of the turbine in the intake passage when the vehicle slows down, the gas can be supplied for the shortage while the vehicle is accelerating, which can reduce turbocharger delay effect directly. However, turbocharger delay effect changes a little at high speed and low speed which is subjected to the air inflation and short air-release time. This paper adds a set of pressure booster device on the existing inflating-deflating device, whose thermal energy comes from the compressed air and lubricating oil, to facilitate pressure increasing in inflating-deflating device and help the chamber change sooner, which avails to relieve the delay effect.
Journal Article

A Wavelet Neural Network Method to Determine Diesel Engine Piston Heat Transfer Boundary Conditions

2012-09-10
2012-01-1760
This paper presents a method of calculating temperature field of the piston by using a wavelet neural network (WNN) to identify the unknown boundary conditions. Because of the complexity of the heat transfer and limitations of experimental conditions of heat transfer analysis of the piston in a diesel engine, boundary conditions of the piston temperature field were usually obtained empirically, and thus the result itself was uncertain. By employing the capability of resolution analysis from a wavelet neural network, the method obtains improved boundary heat transfer coefficients with a limited number of measured temperatures. Using FEA software iteratively, results show the proposed wavelet neural network analysis method improves the prediction of unknown boundary conditions and temperature distribution consistent with the experimental data with an acceptable error.
Technical Paper

Adaptive Hybrid Thermostat Control Strategy for Series Hybrid Electric Vehicles

2021-12-31
2021-01-7024
For series hybrid electric vehicles (SHEV), rule-based strategies are realistic and powerful in real-time applications. However, the previous rule-based strategy cannot strike a balance between the best fuel economy and the best battery performance while maintaining the advantages of real-time applications. In order to obtain higher efficiency and reduce battery consumption, we have developed an adaptive hybrid thermostat strategy. On the basis of maintaining the load leveling of the thermostat strategy, the threshold-changing mechanism is added to realize the adaptive adjustment of the engine starting power under different SOC conditions, so as to achieve the goal of prolonging the battery life. In addition, the more fuel-efficient emergency handling rules designed to further reduce comprehensive fuel consumption.
Technical Paper

Analysis of Passive Low Power Phase Change Heat Dissipation Method for Electric Vehicle Motor

2019-04-02
2019-01-1256
The electric vehicle motor is developing toward high power density, at the same time brings serious temperature rise problem, which affect the driving motor performance, efficiency, and useful life. Liquid cooling is usually used to solve the problem, but its energy consumption is large and the reliability is poor. In order to solve this problem, this paper proposes a heat dissipation method to improve the reliability and energy efficiency of the driving motor heat dissipation system. The method uses heat pipes heat transfer, and the heat pipes cold end are cooled by vehicle facing the wind. By establishing the motor temperature rise model, heat transfer model and vehicle dynamics model, this paper analyzes the maximum temperature region and reliability of the driving motor heat dissipation system, calculates and analyzes the efficiency of the driving motor under different driving conditions.
Technical Paper

Analysis of the Thermal Deformation in an Automotive Exhaust-Based Thermoelectric Generator

2015-04-14
2015-01-0348
The potential for automotive exhaust-based thermoelectric generator (TEG) has been increasing with continuously advances in thermoelectric technology. In this paper, the thermal deformation of the TEG system is studied on the basis of the surface temperature distribution of the heat exchanger. The simulation result shows that thermoelectric modules (TMs) on different positions have different thermal performance which can significantly influence the power generation efficiency of the system. Meanwhile, in terms of the working performance of TMs, the clamping mechanism is considered to have some effects on both the cold side and the hot side of TEG. Following the simulation, bench tests are carried out to confirm the reasonability of the simulation results.
Technical Paper

Automatic Parking Control Algorithms and Simulation Research Based on Fuzzy Controller

2020-04-14
2020-01-0135
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, which may cause traffic accidents such as vehicle collisions and road jams because of poor parking skills. The emergence of an automatic parking system can help drivers park safely and reduce the occurrence of safety accidents. In this paper, the neural network identifier on the control method of an adaptive integral derivative of a neural network is proposed for an automatic parallel parking system with front-wheel steering is studied by using MATLAB/Simulink environment, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space, and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial.
Technical Paper

Battery Thermal Management System Using Water as a Phase Change Material

2017-10-08
2017-01-2454
In these years, the advantages of using phase change material (PCM) in the thermal management of electric power battery has been wide spread. Because of the thermal conductivity of most phase change material (eg.wax) is low, many researchers choose to add high conductivity materials (such as black lead). However, the solid-liquid change material has large mass, poor flow-ability and corrosively. Therefore, it still stays on experiential stage. In this paper, the Thermal characteristics of power battery firstly be invested and the requirements of thermal management system also be discussed. Then a new PCM thermal management has been designed which uses pure water as liquid phase change material, adopts PCM with a reflux device for thermal management.
Technical Paper

Big-Data Based Online State of Charge Estimation and Energy Consumption Prediction for Electric Vehicles

2016-04-05
2016-01-1200
Whether the available energy of the on-board battery pack is enough for the driver’s next trip is a major contributor in slowing the growth rate of Electric Vehicles (EVs). What’s more, the actual capacity of the battery pack depend on so many factors that a real-time estimation of the state of charge of the battery pack is often difficult. We proposed a big-data based algorithm to build a battery pack dynamic model for the online state of charge estimation and a stochastic model for the energy consumption prediction. And the good performance of sensors, high-bandwidth communication systems and cloud servers make it convenient to measure and collect the related data, which are grouped into three categories: standard, historical and real-time data. First a resistance-capacitance ( RC )-equivalent circuit is taken consideration to simplify the battery dynamics.
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Technical Paper

Cold-end Temperature Control Method for the Engine Exhaust Heat Thermoelectric Module

2014-09-30
2014-01-2343
To make full use of engine exhaust heat and further improve the utilization of the energy efficiency of the heavy truck, thermoelectric module is used to contribute to thermoelectric power generation. The hot-end temperature of the module varies with the engine operating condition because it is connected with the exhaust pipe. The cold-end of the thermoelectric module is mainly cooled by engine cooling system. Increasing the temperature difference between the hot-end and cold-end of the thermoelectric module is a good way to improve the thermoelectric conversion efficiency. For the poor controllability of the hot-end temperature of the thermoelectric module, this study puts forward by lowering the cold-end temperature of the thermoelectric module so as to ensure the improvement of the thermoelectric conversion efficiency. The cooling circle for the cold-end of the thermoelectric module which is independent of the engine cooling system is built.
Journal Article

Cracking Failure Analysis and Optimization on Exhaust Manifold of Engine with CFD-FEA Coupling

2014-04-01
2014-01-1710
For fracture cracks that occurred in the tight coupling exhaust manifold durability test of a four-cylinder gasoline engine with EGR channel, causes and solutions for fracture failure were found with the help of CFD and FEA numerical simulations. Wall temperature and heat transfer coefficient of the exhaust manifold inside wall were first accurately obtained through the thermal-fluid coupling analysis, then thermal modal and thermoplastic analysis were acquired by using the finite element method, on account of the bolt pretightening force and the contact relationship between flange face and cylinder head. Results showed that the first-order natural frequency did not meet the design requirements, which was the main reason of fatigue fracture. However, when the first-order natural frequency was rising, the delta equivalent plastic strain was increasing quickly as well.
Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
Technical Paper

Driving Force Coordinated Control of Separated Axle Hybrid Electric Dump Truck

2017-10-08
2017-01-2462
Due to the increase of mining production and rising labor costs, manufacturers of construction and mining equipment are engaged in developing large tonnage mining truck with good dynamic performance and high transport efficiency. This paper focuses on the improvement of the dynamic performance of a 52t off-highway dump truck. According to the characteristics of its operating cycle, electric auxiliary drive system is installed in the front axle aiming at improving the utilization rate of ground adhesion. The new all-wheel drive hybrid electric system makes it possible for dump truck transports at a higher velocity. Both the conventional dump truck model and the new all-wheel drive hybrid truck model are built based on the AVL-Cruise platform. Meanwhile, under the premise of enough dynamic performance, fuel consumption can be minimized by collaborative optimization in Isight.
Technical Paper

Effect of Stator Surface Area on Braking Torque and Wall Heat Dissipation of Magnetorheological Fluid Retarder

2020-04-14
2020-01-0937
Magnetorheological fluid (MRF) is used as the transmission medium of the hydraulic retarder. The rheological properties are regulated by changing the magnetic field to achieve accurate control of the retarder's braking torque. Under the action of the external magnetic field, the flow structure and performance of the MRF retarder will be changed in a short time. The apparent viscosity coefficient increases by several orders of magnitude, the fluidity deteriorates and the heat generated by the brake cannot be transferred through the liquid circulation, which will affect the braking torque of the retarder. Changing the surface area of the stator also has an influence on the braking torque of the retarder and the wall heat dissipation. In this study, the relationship between the braking torque of the MRF retarder and the stator surface area of the retarder was analyzed.
X