Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A COMPARISON BETWEEN BIORID AND HYBRID III HEAD/NECK/TORSO RESPONSE IN MIDDLE SPEED SLED REAR IMPACT TESTS

2001-06-04
2001-06-0032
The most important tool used in testing methods for evaluating the performance of seat-systems in rear-end impacts is a biofidelic crash test dummy. It has been reported that there are differences in response between two kinds of such dummies, BioRID P3 and Hybrid III, in rear-end impacts at Δ V=9.2 km/h. The objective of this study is to compare the responses of these two types of dummies, at moderate speeds with HYGE sled tests (Δ V=15 km/h, 25 km/h). At Δ V=25 km/h or less, the BioRID and HYIII dummies showed clear differences in their response to a rear-end collision, and the BioRID showed higher biofidelity than the HyIII in this condition.
Technical Paper

A Comparison between Volunteer, BioRID P3 and Hybrid III performance in Rear Impacts

1999-09-23
1999-13-0011
The most important tool to date for testing seat-systems in rear impacts is a crash test dummy. However, investigators have noted limitations of the most commonly used dummy, the Hybrid III. Although the BioRID I is a step closer to a biofidelic crash test dummy it is not user-friendly and the straightening of the thoracic spine kyphosis is smaller than that of humans. The objective of this study is to compare the performance of the latest prototype of the BioRID, the P3, with those of volunteers. The BioRID P3 has new neck muscle substitutes, a softer thoracic spine and a softer rubber torso than does the BioRID I. The BioRID P3 was validated against volunteer test data in both a rigid and a standard seat without head restraints. The dummy kinematic performance, pressure distribution between subject and seatback, spine curvature, neck loads and accelerations were compared to those of seven volunteers and a Hybrid III fitted with a standard neck.
Technical Paper

A Method for the Experimental Investigation of Acceleration as a Mechanism of Aortic Injury

2005-04-11
2005-01-0295
Rupture of the thoracic aorta is a leading cause of rapid fatality in automobile crashes, but the mechanism of this injury remains unknown. One commonly postulated mechanism is a differential motion of the aortic arch relative to the heart and its neighboring vessels caused by high-magnitude acceleration of the thorax. Recent Indy car crash data show, however, that humans can withstand accelerations exceeding 100 g with no injury to the thoracic vasculature. This paper presents a method to investigate the efficacy of acceleration as an aortic injury mechanism using high-acceleration, low chest deflection sled tests. The repeatability and predictability of the test method was evaluated using two Hybrid III tests and two tests with cadaver subjects. The cadaver tests resulted in sustained mid-spine accelerations of up to 80 g for 20 ms with peak mid-spine accelerations of up to 175 g, and maximum chest deflections lower than 11% of the total chest depth.
Technical Paper

A Normalization Technique for Developing Corridors from Individual Subject Responses

2004-03-08
2004-01-0288
This paper presents a technique for developing corridors from individual subject responses contained in experimental biomechanical data sets. Force-deflection response is used as an illustrative example. The technique begins with a method for averaging human subject force-deflection responses in which curve shape characteristics are maintained and discontinuities are avoided. Individual responses sharing a common characteristic shape are averaged based upon normalized deflection values. The normalized average response is then scaled to represent the given data set using the mean peak deflection value associated with the set of experimental data. Finally, a procedure for developing a corridor around the scaled normalized average response is presented using standard deviation calculations for both force and deflection.
Technical Paper

A Simulation Analysis of Human Cervical Spine Motion During Low Speed Rear-End Impacts

2000-03-06
2000-01-0154
The non-physiological motions of human cervical vertebrae were analyzed in volunteer tests for rear-end impacts and were considered to be an important parameter for neck injuries. The objectives of this study are to improve the Marko de Jager neck model using volunteer test data and to analyze the influence of horizontal and vertical accelerations on cervical vertebral motion. In the beginning of this study, a neck model was positioned based on X-ray cineradiography of a volunteer. Motions of each vertebra were compared with those of volunteer test data for low speed rear-end impacts (4, 6, 8km/h). In these comparisons, the differences of vertebrae motions between the neck model and the volunteer tests were found. To improve the validity of the neck model, the connection properties and the bending properties of the upper and lower vertebrae of the model were modified to increase rigidity.
Journal Article

Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control

2013-04-08
2013-01-0350
This paper considers an application of reference governor (RG) to automotive diesel aftertreatment temperature control. Recently, regulations on vehicle emissions have become more stringent, and engine hardware and software are expected to be more complicated. It is getting more difficult to guarantee constraints in control systems as well as good control performance. Among model-based control methods that can directly treat constraints, this paper focuses on the RG, which has recently attracted a lot of attention as one method of model prediction-based control. In the RG, references in tracking control are modified based on future prediction so that the predicted outputs in a closed-loop system satisfy the constraints. This paper proposes an online RG algorithm, taking account of the real-time implementation on engine embedded controllers.
Technical Paper

Assessment of a Three-Point Restraint System with a Pre-tensioned Lap Belt and an Inflatable, Force-Limited Shoulder Belt

2011-11-07
2011-22-0007
This study investigates the performance of a 3-point restraint system incorporating an inflatable shoulder belt with a nominal 2.5-kN load limiter and a non-inflatable lap belt with a pretensioner (the “Airbelt”). Frontal impacts with PMHS in a rear seat environment are presented and the Airbelt system is contrasted with an earlier 3-point system with inflatable lap and shoulder belts but no load-limiter or pretensioners, which was evaluated with human volunteers in the 1970s but not fully reported in the open literature (the “Inflataband”). Key differences between the systems include downward pelvic motion and torso recline with the Inflataband, while the pelvis moved almost horizontally and the torso pitched forward with the Airbelt. One result of these kinematic differences was an overall more biomechanically favorable restraint loading but greater maximum forward head excursion with the Airbelt.
Technical Paper

Autonomous Intelligent Cruise Control Incorporating Automatic Braking

1993-03-01
930510
Conventional cruise control systems have been in use for many years. Their function is to maintain a preset vehicle speed thus improving the comfort for the driver during steady driving conditions. Most systems achieve this by having a small electronic control unit which monitors vehicle speed and driver interface controls and operates the throttle butterfly to control engine power. Figure 1. Various interlock features are fitted to prevent unwanted engine power increases in the event of a system failure. Cruise control is widely fitted in the North American market, but on the more crowded roads of Western Europe its use is somewhat restricted. The ability to maintain a fixed speed is of limited use when traffic conditions dictate the widely varying speeds that are commonplace in the UK and becoming more common in the rest of Western Europe and North America.
Technical Paper

Biofidelic Responses of the THOR-NT and Hybrid III Based on Component Tests

2008-04-14
2008-01-0520
Component tests were conducted in order to evaluate the biofidelity of the THOR-NT on the head, neck, thorax, abdomen, face, femur, and lower extremity (THOR-Lx). The biofidelity of the dummy was evaluated by comparing its biofidelic responses with the PMHS response corridors. Likewise, component tests on each body part of the Hybrid III were conducted, and the biofidelity between THOR-NT (THOR-Lx) and Hybrid III were compared. The THOR tests were subject to test procedures established by GESAC, Inc./NHTSA; the THOR-Lx tests were subject to NHTSA/VRTC procedures. Responses on the head and femur of both the THOR-NT and Hybrid III were within the PMHS response corridors. However, for other body parts - although each component of THOR-NT did not yield results that satisfied all the PMHS response corridors - the responses of THOR-NT were closer to the corridors than those of the Hybrid III.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 1: Development of an Experimental Model and Quantification of Structural Response to Dynamic Belt Loading

2006-11-06
2006-22-0001
The abdomen is the second most commonly injured region in children using adult seat belts, but engineers are limited in their efforts to design systems that mitigate these injuries since no current pediatric dummy has the capability to quantify injury risk from loading to the abdomen. This paper develops a porcine (sus scrofa domestica) model of the 6-year-old human's abdomen, and then defines the biomechanical response of this abdominal model. First, a detailed abdominal necropsy study was undertaken, which involved collecting a series of anthropometric measurements and organ masses on 25 swine, ranging in age from 14 to 429 days (4-101 kg mass). These were then compared to the corresponding human quantities to identify the best porcine representation of a 6-year-old human's abdomen. This was determined to be a pig of age 77 days, and whole-body mass of 21.4 kg.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Blood Flow and Fluid-Structure Interactions in the Human Aorta During Traumatic Rupture Conditions

2007-10-29
2007-22-0010
Traumatic aortic rupture (TAR) accounts for a significant mortality in automobile crashes. A numerical method by means of a mesh-based code coupling is employed to elucidate the injury mechanism of TAR. The aorta is modeled as a single-layered thick wall composed of two families of collagen fibers using an anisotropic strain energy function with consideration of viscoelasticity. A set of constitutive parameters is identified from experimental data of the human aorta, providing strict local convexity. An in vitro aorta model reconstructed from the Visible Human dataset is applied to the pulsatile blood flow to establish the references of mechanical quantities for physiological conditions. A series of simulations is performed using the parameterized impact pulses obtained from frontal sled tests.
Technical Paper

Braking Behaviour in Emergencies

1995-02-01
950969
Emergency situations rarely occur in a driver's experience and the braking and steering manoeuvres that are then required are usually outside the routine physical behaviour ranges. Immediate reactions are automatic and are therefore unlikely to include physical movements that go beyond these limits. It has always been difficult, however, to prove this because simulators could not create total realism, accident studies do not show brake pedal behaviour and realistic experiments are unethical and dangerous. This paper reviews what is known about driver braking behaviour together with accident studies. Experiments performed by Lucas are described in which pseudo-realistic accident situations are created and braking behaviour modelled.
Technical Paper

Cervical Injury Mechanism Based on the Analysis of Human Cervical Vertebral Motion and Head-Neck-Torso Kinematics During Low Speed Rear Impacts

1997-11-12
973340
Twelve volunteers participated in the experiment under the supervision of Tsukuba University Ethics Committee. The subjects sat on a seat mounted on a newly developed sled that simulated actual car impact acceleration. We selected impact speeds (4, 6 and 8 km/h), seat stiffness, neck muscle tension, and alignment of the cervical spine for the parameter study of the head-neck-torso kinematics and cervical spine responses. The effects of those parameters were studies without headrest. The muscle activity was measured with surface electromyography. The cervical vertebrae motion was recorded by cineradiography (90 frames/s X-ray) and analyzed to quantify the rotation and translation of cervical vertebrae at impact. Furthermore, the motion patterns of cervical vertebrae in the crash motion and in the normal motion were compared. Subject's muscles in the relaxed state did not affect the head-neck-torso kinematics upon rear-end impact.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
Technical Paper

DEVELOPMENT OF A WHIPLASH INJURY REDUCING SEAT SYSTEM USING BIORID II DUMMY

2001-06-04
2001-06-0057
In recent years, several kinds of seat systems that aim to reduce cervical spinal injuries in rear impacts, so called ‘whiplash injuries’, have been released by some car manufacturers and seat suppliers in the world. Meanwhile, several kinds of dummies have been developed to be representatives of occupants under such conditions. One of these is the BioRID II equipped with a realistic spine constructed of multiple vertebrae similar to that of a human. It is regarded as the most biofidelic dummy for low speed rear impact. Using this dummy, some typical ‘whiplash protective’ seat systems currently available were dynamically tested to see their performance on injury reduction. From the results of these tests, the design direction to lessen the injury level more efficiently was determined.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Differences in the Dynamic Responses of the Thor-NT and Thor-FT Dummies

2006-04-03
2006-01-0676
The structural differences between the Thor-NT and Thor-FT dummies, which have been proposed as next-generation dummies for frontal crash tests, were examined and the differences in dynamic response were verified by testing. Tests were performed on a HYGE sled simulating a frontal crash at an impact speed of 56 km/h. The 3-point seatbelt plus air bag combination was adopted as the restraint mechanism. Differences in characteristics of the two dummies in the neck, thorax, and abdomen were found by calibration tests. Test results showed that the variation in shape of the abdominal area of the pelvis generates some disparity in the flexion of the thorax and abdomen.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Dynamic response analysis of the THOR-LX dummy lower extremity

2001-06-04
2001-06-0072
Regarding THOR-50AM dummy lower extremities (hereafter referred to as ""THOR''and ""THOR-LX'') developed as an assembly of lower extremities for next-generation dummies in frontal impact test, we have conducted a series of tests as follows. HYGE sled tests with a toe-board simulating the impact upon intrusion into the vehicle compartment around the occupant feet, dummy dropping tests with two different postures; one is the upright posture with the knees set straight and another is the posture with the knees bent, in order to apply impact loads and to measure/evaluate the impact response characteristics.
X