Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Servo Vehicle Driver for EPA Emission Tests

1973-02-01
730532
An electronic servo controller, combined with an electric chassis dynamometer and a synchronized mini-computer generated command signal, provides consistent and smooth driving of development vehicles on EPA emission runs. The electronic controller provides the necessary signals to actuate the throttle servo to power the engine, and to generate braking torque on the chassis rolls of the electric dynamometer. The servo gain and compensation circuits allow accurate and stable operation over a wide range of engine loads, transmission gear ratios, and car speeds. A single gain-compensation network is sufficient for vehicles used in AC's catalytic converter development program. Safety shutdown circuits and ease of installation are provided in the design.
Technical Paper

Coupling Nodal and Multi-Zone Combustion Models to Describe Thermal Diesel Engine Behavior

2008-04-14
2008-01-0845
Engine thermal behavior has been solved previously in steady and transient conditions thanks to a lumped capacity model, also called nodal model. But serious shortcomings appear in the heat flux formulation introduced in the model. In this paper, we show that using steady-state maps of heat transfer coefficients to simulate transient thermal response of diesel engines is not sufficient. The heat transfer is strongly influenced by the injection pattern, the intake air conditions and the walls temperatures, which are not taken into account in the previous model. Introducing a single cylinder multi-zone combustion model, a better description of the combustion process and so of the heat release can be obtained. The coupled models are used to describe a 1,9l, 4-cylinder direct injection diesel engine during a warm-up. The results (oil and coolant temperatures) show a good agreement between measures and simulations. This approach offers a great potential for further applications.
Technical Paper

Effect of Temperature Stratification on the Auto-ignition of Lean Ethanol/Air Mixture in HCCI engine

2008-06-23
2008-01-1669
It has been known from multi-zone simulations that HCCI combustion can be significantly affected by temperature stratification of the in-cylinder gas. With the same combustion timing (i.e. crank angles at 50% heat release, denoted as CA50), large temperature stratification tends to prolong the combustion duration and lower down the in-cylinder pressure-rise-rate. With low pressure-rise-rate HCCI engines can be operated at high load, therefore it is of practical importance to look into more details about how temperature stratification affects the auto-ignition process. It has been realized that multi-zone simulations can not account for the effects of spatial structures of the stratified temperature field, i.e. how the size of the hot and cold spots in the temperature field could affect the auto-ignition process. This question is investigated in the present work by large eddy simulation (LES) method which is capable of resolving the in-cylinder turbulence field in space and time.
Technical Paper

Effect of Turbulence and Initial Temperature Inhomogeneity on Homogeneous Charge Compression Ignition Combustion

2006-10-16
2006-01-3318
A 0.5 liter optical HCCI engine firing a mixture of n-heptane (50%) and iso-octane (50%) with air/fuel ratio of 3 is studied using large eddy simulation (LES) and laser diagnostics. Formaldehyde and OH LIF and in-cylinder pressure were measured in the experiments to characterize the ignition process. The LES made use of a detailed chemical kinetic mechanism that consists of 233 species and 2019 reactions. The auto-ignition simulation is coupled with LES by the use of a renormalized reaction progress variable. Systematic LES study on the effect of initial temperature inhomogeneity and turbulence intensity has been carried out to delineate their effect on the ignition process. It was shown that the charge under the present experimental condition would not be ignited without initial temperature inhomogeneity. Increasing temperature inhomogeneity leads to earlier ignition whereas increasing turbulence intensity would retard the ignition.
Technical Paper

Hydrogen as Homogeneous Charge Compression Ignition Engine Fuel

2004-06-08
2004-01-1976
Hydrogen has been proposed as a possible fuel for automotive applications. This paper reports an experimental investigation of hydrogen as HCCI engine fuel. The aim of the experimental study is to investigate the possibility to run an HCCI engine on an extremely fast burning fuel such as hydrogen as well as to study the efficiency, the combustion phasing and the formation of emissions. The experiments were conducted on a single-cylinder research engine with a displacement volume of 1.6 litres and pancake combustion chamber geometry. Variation of lambda, engine speed, compression ratio and intake temperature were parts of the experimental setting. The engine was operated in Homogenous Charge Compression Ignition (HCCI) mode and as comparison also in Spark Ignition (SI) mode. Hydrogen was found to be a possible fuel for an HCCI engine. The heat release rate was extremely high and the interval of possible start of combustion crank angles was found to be narrow.
Technical Paper

Knock Modeling: an Integrated Tool for Detailed Chemistry and Engine Cycle Simulation

2003-10-27
2003-01-3122
For the simultaneous evaluation of the influence on engine knock of both chemical conditions and global operating parameters, a combined tool was developed. Thus, a two-zone kinetic model for SI engine combustion calculation (Ignition) was implemented into an engine cycle simulation commercial code. The combined model predictions are compared with experimental data from a single-cylinder test engine. This shows that the model can accurately predict the knock onset and in-cylinder pressure and temperature for different lambda conditions, with and without EGR. The influence of nitric oxide amount from residual gas in relation with knock is further investigated. The created numerical tool represents a useful support for experimental measurements, reducing the number of tests required to assess the proper engine control strategies.
Journal Article

Large Eddy Simulation and Experiments of the Auto-Ignition Process of Lean Ethanol/Air Mixture in HCCI Engines

2008-06-23
2008-01-1668
Recent experiments and numerical studies have showed that piston geometry has a significant effect on the homogeneous charge compression ignition (HCCI) process. There are two effects generated by the combustor geometry: the geometry affects the flow/turbulence in the cylinder; the geometry also affects the temperature stratification. The temperature stratification is more directly responsible for the observed alteration of the auto-ignition process. To clarify this issue further we present in this paper a study of two engines with the same geometry but difference ways of cooling. Measurement of the two engines - a metal engine and quartz piston engine, both with the same piston bowl geometry - is carried out. Large eddy simulation (LES) is used to simulate the flow, the temperature field and the auto-ignition process in the two engines. The fuel is ethanol with a relative air/fuel ratio of 3.3.
Technical Paper

Numerical and Experimental Investigation of Turbulent Flows in a Diesel Engine

2006-10-16
2006-01-3436
This paper presents a study of the turbulence field in an optical diesel engine operated under motored conditions using both large eddy simulation (LES) and Particle Image Velocimetry (PIV). The study was performed in a laboratory optical diesel engine based on a recent production engine from VOLVO Car. PIV is used to study the flow field in the cylinder, particularly inside the piston bowl that is also optical accessible. LES is used to investigate in detail the structure of the turbulence, the vortex cores, and the temperature field in the entire engine, all within a single engine cycle. The LES results are compared with the PIV measurements in a 40 × 28 mm domain ranging from the nozzle tip to the cylinder wall. The LES grid consists of 1283 cells. The grid dynamically adjusts itself as the piston moves in the cylinder so that the engine cylinder, including the piston bowl, is described by the grid.
Technical Paper

Prediction Tool for the Ion Current in SI Combustion

2003-10-27
2003-01-3136
In this work, constant volume combustion is studied using a zero-dimensional FORTRAN code, which is a wide-ranging chemical kinetic simulation that allows a closed system of gases to be described on the basis of a set of initial conditions. The model provides an engine- or reactor-like environment in which the engine simulations allow for a variable system volume and heat transfer both to and from the system. The combustion chamber is divided into two zones as burned and unburned ones, which are separated by an assumed thin flame front in the combustion model used for this work. Equilibrium assumptions have been adopted for the modeling of the thermal ionization, where Saha's equation was derived for singly ionized molecules. The investigation is focused on the thermal ionization of NO as well as for other species. The outputs generated by the model are temperature profiles, species concentration profiles, ionization degree and an electron density for each zone.
Technical Paper

Reformed Methanol Gas as Homogeneous Charge Compression Ignition Engine Fuel

2004-10-25
2004-01-2991
Hydrogen has been proposed as a possible fuel for automotive applications. Methanol is one of the most efficient ways to store and handle hydrogen. By catalytic reformation it is possible to convert methanol into hydrogen and carbon monoxide. This paper reports an experimental investigation of Reformed Methanol Gas as Homogeneous Charge Compression Ignition (HCCI) engine fuel. The aim of the experimental study is to investigate the possibility to run an HCCI engine on a mixture of hydrogen and carbon monoxide, to study the combustion phasing, the efficiency and the formation of emissions. Reformed Methanol Gas (RMG) was found to be a possible fuel for an HCCI engine. The heat release rate was lower than with pure hydrogen but still high compared to other fuels. The interval of possible start of combustion crank angles was found to be narrow but wider than for hydrogen. The high rate of heat release limited the operating range to lean (λ>3) cases as with hydrogen.
Technical Paper

Simulation of Soot Formation Under Diesel Engine Conditions Using a Detailed Kinetic Soot Model

1998-02-01
981022
Numerical simulations of diesel engine combustion and emission formation have been performed using a detailed soot model. Operating conditions typical for modern truck-size engines have been investigated, and calculated results show encouraging agreement with experimental data for soot in engine exhaust gas. Predictions of details in the soot formation process compare well with detailed experimental data from the literature. The modelling of the soot/flow-field interaction is based on a flamelet approach. Source terms of the soot volume fraction are taken from a flamelet library using a presumed probability density function and integrating over mixture fraction space. In order to save computer storage and CPU time, the flamelet library of sources was constructed using a multi-parameter fitting procedure resulting in simple algebraic equations and a proper set of parameters.
Technical Paper

Soot Particle Size Distribution~A Joint Work for Kinetic Modelling and Experimental Investigations

2005-09-11
2005-24-053
The intention of the presented work was to develop a new simulation tool that fits into a CFD (computational fluid dynamics) workflow and provides information about the soot particle size distribution. Additionally it was necessary to improve and use state-of-the-art measurement techniques in order to be able to gain more knowledge about the behavior of the soot particles and to validate the achieved simulation results. The work has been done as a joint research financed by the European Community under FP5.
Technical Paper

Stochastic Model for the Investigation of the Influence of Turbulent Mixing on Engine Knock

2004-10-25
2004-01-2999
A stochastic model based on a probability density function (PDF) was developed for the investigation of different conditions that determine knock in spark ignition (SI) engine, with focus on the turbulent mixing. The model used is based on a two-zone approach, where the burned and unburned gases are described as stochastic reactors. By using a stochastic ensemble to represent the PDF of the scalar variables associated with the burned and the unburned gases it is possible to investigate phenomena that are neglected by the regular existing models (as gas non-uniformity, turbulence mixing, or the variable gas-wall interaction). Two mixing models are implemented for describing the turbulent mixing: the deterministic interaction by exchange with the mean (IEM) model and the stochastic coalescence/ dispersal (C/D) model. Also, a stochastic jump process is employed for modeling the irregularities in the heat transfer.
Technical Paper

The Effect of Unconventional Piston Movement on SI Engine Combustion and Emissions

2005-04-11
2005-01-1170
A major trend in current automotive research is hybridization of the power supply. This combination of electrical machine and combustion engine results, in some hybridization topologies, in a total decoupling of the combustion engine from the transmission. When the engine is decoupled from the transmission a new degree of freedom arises in engine design. The piston movement does not have to follow an evenly rotating shaft any more. It can be altered by the generator to achieve a movement found to be better from the point of efficiency or environmental concerns. Modelling work showed a potential of lowered NO emissions if the expansion could be delayed. The experimental study, conducted in a two piston Alvar engine, showed that the state of the art electrical machine (EM) propelling one of the crankshafts was too weak to change the crankshaft speed in an extent to give the fast volume changes required to change the emissions of the internal combustion engine (ICE).
Technical Paper

The Influence of Nitric Oxide on the Occurrence of Autoignition in the End Gas of Spark Ignition Engines

2002-10-21
2002-01-2699
Full cycle simulations of a spark ignition engine running on a primary reference fuel have been performed using a two-zone model. A detailed kinetic mechanism is taken into account in each of the zones, while the propagating flame front is calculated from a Wiebe function. The initial conditions for the unburned gas zone were calculated as a mixture of fresh gas and rest gas. The composition of the burned gas zone at the end of the last engine cycle, including nitric oxide emissions, was taken as rest gas. The simulations confirm that the occurrence of autoignition in the end gas is sensitive on the amount of nitric oxide in the rest gas of the spark ignition engine. The comparison of autoignition timings calculated for a single cylinder test engine are getting more accurate if the nitric oxide in the initial gases is taken into account.
Technical Paper

Warm-Up of a D.I. Diesel Engine: Experiment and Modeling

2000-03-06
2000-01-0299
With the increasing efficiency of D.I. Diesel engines, the heat power needed to warm the passengers compartment becomes too low during the warm-up period. So the temperature increase of oil and water may be accelerate. This paper is devoted to the understanding of the phenomena involved in this process and their modeling. A diesel engine enclosed in a calorimeter is mounted on a test bench and largely instrumented. From the recorded data, the instantaneous energy balance is set up for different running conditions. Some general trends may be pointed out. During the first minute, 50% of the fuel energy is absorbed by the heat capacity of the heavy metallic components. This part progressively decreases to the benefit of heat transferred to the coolant. Furthermore, for increasing distance from the combustion chamber in the block, the rate of temperature rise decreases. Concerning the oil temperature evolution, it lags behind the water one.
X