Refine Your Search

Topic

Search Results

Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Journal Article

3D-CFD-Study of Aerodynamic Losses in Compressor Impellers

2018-07-05
Abstract Due to the increasing requirements for efficiency, the wide range of characteristics and the improved possibilities of modern development and production processes, compressors in turbochargers have become more individualized in order to adapt to the requirements of internal combustion engines. An understanding of the working mechanisms as well as an understanding of the way that losses occur in the flow allows a reduced development effort during the optimization process. This article presents three-dimensional (3D) Computational Fluid Dynamics (CFD) investigations of the loss mechanisms and quantitative calculations of individual losses. The 3D-CFD method used in this article will reduce the drawbacks of one-dimensional calculation as far as possible. For example, the twist of the blades is taken into account and the “discrete” method is used for loss calculation instead of the “average” method.
Journal Article

48V Exhaust Gas Recirculation Pump: Reducing Carbon Dioxide with High-Efficiency Turbochargers without Increasing Engine-Out NOx

2021-08-23
Abstract Regulations limiting GreenHouse Gases (GHG) from Heavy-Duty (HD) commercial vehicles in the United States (US) and European Union will phase in between the 2024 and 2030 model years. These mandates require efficiency improvements at both the engine and vehicle levels, with the most stringent reductions required in the heaviest vehicles used for long-haul applications. At the same time, a 90% reduction in oxides of nitrogen (NOx) will be required as part of new regulations from the California Air Resources Board. Any technologies applied to improve engine efficiency must therefore not come at the expense of increased NOx emissions. Research into advanced engine architectures and components has identified improved turbomachine efficiency as one of the largest potential contributors to engine efficiency improvement. However this comes at the cost of a reduced capability to drive high-pressure Exhaust Gas Recirculation (EGR).
Journal Article

A Comparative Study of Directly Injected, Spark Ignition Engine Combustion and Energy Transfer with Natural Gas, Gasoline, and Charge Dilution

2022-01-13
Abstract This article presents an investigation of energy transfer, flame propagation, and emissions formation mechanisms in a four-cylinder, downsized and boosted, spark ignition engine fuelled by either directly injected compressed natural gas (DI CNG) or gasoline (GDI). Three different charge preparation strategies are examined for both fuels: stoichiometric engine operation without external dilution, stoichiometric operation with external exhaust gas recirculation (EGR), and lean burn. In this work, experiments and engine modelling are first used to analyze the energy transfer throughout the engine system. This analysis shows that an early start of fuel injection (SOI) improves fuel efficiency through lower unburned fuel energy at low loads with stoichiometric DI CNG operation.
Journal Article

A Comparison of EGR Correction Factor Models Based on SI Engine Data

2019-03-27
Abstract The article compares the accuracy of different exhaust gas recirculation (EGR) correction factor models under engine conditions. The effect of EGR on the laminar burning velocity of a EURO VI E10 specification gasoline (10% Ethanol content by volume) has been back calculated from engine pressure trace data, using the Leeds University Spark Ignition Engine Data Analysis (LUSIEDA) reverse thermodynamic code. The engine pressure data ranges from 5% to 25% EGR (by mass) with the running conditions, such as spark advance and pressure at intake valve closure, changed to maintain a constant engine load of 0.79 MPa gross mean effective pressure (GMEP). Based on the experimental data, a correlation is suggested on how the laminar burning velocity reduces with increasing EGR mass fraction.
Journal Article

A Concept of a Pulse-Powered Turbine Engine with Application of Self-Acting Displacement Valves—3D Numerical Analysis

2021-03-12
Abstract The article presents a concept of a new turbine engine in the field of pressure gain combustion (PGC). The engine operates according to the Humphrey thermodynamic cycle, where pressure increase was obtained in a combustion chamber closed with a valve. The intake mushroom valve and exhaust swing valve were designed for self-acting. They operate as a result of gas pressure and centrifugal force. The engine consists of two rotating combustion chambers and a counterrotating radial turbine, in both of which mechanical power was generated. The gas flow in the mobile valve system, combustion process, gas expansion, and torque generation were analyzed by means of Computational Fluid Dynamics (CFD) analysis. The investigated engine concept is characterized by significant energy efficiency.
Journal Article

A Contribution to Improving the Thermal Management of Powertrain Systems

2019-10-08
Abstract This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
Journal Article

A Cylinder Pressure-Based Knock Detection Method for Pre-chamber Ignition Gasoline Engine

2021-02-26
Abstract A pre-chamber ignition system has the potential to reduce the burn duration of lean-burn gasoline engine combustion and can achieve a reduced knock occurrence from the distributed ignition sources. Pre-chamber ignition produces high-velocity turbulent jets, and these jets often reach sonic velocity and produce shock waves inside the combustion chamber. These shock waves make knock detection difficult with a conventional surface-mounted acoustic knock sensor. This article discusses how an acoustic knock sensor works with a pre-chamber ignition and evaluates different cylinder pressure-based knock detection strategies and proposes a method that eliminates the influence of jet-induced oscillations on knock detection.
Journal Article

A Deep Learning-Based Strategy to Initiate Diesel Particle Filter Regeneration

2021-12-13
Abstract Deep learning (DL)-based approaches enable unprecedented control paradigms for propulsion systems, utilizing recent advances in high-performance computing infrastructure connected to modern vehicles. These approaches can be employed to optimize diesel aftertreatment control systems targeting the reduction of emissions. The optimization of the Trapped Soot Load (TSL) reduction in the Diesel Particulate Filter (DPF) is such an example. As part of the diesel aftertreatment system, the DPF stores the soot particles resulting from the combustion process in the engine. Periodically, the stored soot is oxidized during a DPF regeneration event. The efficiency of such a regeneration influences the fuel economy, and potentially the service interval of the vehicle. The quality of a regeneration depends on the operating conditions of the DPF, the engine, and the ability to complete the regeneration event.
Journal Article

A Diesel Engine Ring Pack Performance Assessment

2024-03-23
Abstract Demonstrating ring pack operation in an operating engine is very difficult, yet it is essential to optimize engine performance parameters such as blow-by, oil consumption, emissions, and wear. A significant amount of power is lost in friction between piston ring–cylinder liner interfaces if ring pack parameters are not optimized properly. Thus, along with these parameters, it is also necessary to reduce friction power loss in modern internal combustion engines as the oil film thickness formed between the piston ring and liner is vital for power loss reduction due to friction. Hence, it has also been a topic of research interest for decades. Piston and ring dynamics simulation software are used extensively for a better ring pack design. In this research work, a similar software for piston ring dynamics simulation reviews the ring pack performance of a four-cylinder diesel engine.
Journal Article

A Distributed Parameter Approach for the Modeling of Thermoelectric Devices

2018-12-04
Abstract Thermoelectric devices (TEDs) allow direct electric and thermal energy mutual conversion. Because of the absence of working fluids and moving components, they can be used where it is not possible to refer to conventional technologies. In automotive applications, TEDs can give support in air conditioning and internal combustion engine (ICE) thermal heat recovery, contributing to increase the overall vehicle efficiency. Phenomena taking place in these devices are of a different nature and involve electric, thermal, and thermoelectric aspects, being highly influenced by materials’ characteristics and by system geometry. With the aim to offer a design tool, a TED mathematical model is presented in this article. The proposed model is based on a distributed parameter approach and has been conceived to consider heat transfer actual conditions. It accurately describes thermal energy production and removal terms due to Peltier and Joule effects.
Journal Article

A Dynamic Method to Analyze Cold-Start First Cycles Engine-Out Emissions at Elevated Cranking Speed Conditions of a Hybrid Electric Vehicle Including a Gasoline Direct Injection Engine

2022-02-11
Abstract The cold crank-start stage, including the first three engine cycles, is responsible for a significant amount of the cold-start phase emissions in a Gasoline Direct Injection (GDI) engine. The engine crank-start is highly transient due to substantial engine speed changes, Manifold Absolute Pressure (MAP) dynamics, and in-cylinder temperatures. Combustion characteristics change depending on control inputs variations, including throttle angle and spark timing. Fuel injection strategy, timing, and vaporization dynamics are other parameters causing cold-start first cycles analysis to be more complex. Hybrid Electric Vehicles (HEVs) provide elevated cranking speed, enabling technologies such as cam phasing to adjust the valve timing and throttling, and increased fuel injection pressure from the first firings.
Journal Article

A Fundamental Analysis for Steady-State Operation of Linear Internal Combustion Engine-Linear Generator Integrated System

2022-03-18
Abstract Linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative energy conversion device with the ability of converting mechanical energy into electrical energy, which allows it to be a range extender for hybrid vehicles. This article presents a fundamental analysis for the steady-state operation of the LICELGIS, concentrating on electromagnetic force and motion characteristics. Simple assumptions are made to represent ideal gases instantaneous heat release and rejection. Based on assumptions, sensitivity analysis is carried out for key factors of electromagnetic force. The theoretical velocity model in mathematics is derived from analyzing the LICELGIS theory model. It shows that fuel injection quantity and stroke length are the most sensitive factors in key parameters. The piston velocity around the top dead center (TDC) changes greater than that at any other position, which is caused by the combustion process.
Journal Article

A Global Sensitivity Analysis Approach for Engine Friction Modeling

2019-08-21
Abstract Mechanical friction simulations offer a valuable tool in the development of internal combustion engines for the evaluation of optimization studies in terms of time efficiency. However, system modeling and evaluation of model performance may be highly complex. A high number of interacting submodels and parameters as well as a limited model transparency contribute to uncertainties in the modeling process. In particular, model calibration and validation are complicated by the unknown effect of parameters on the model output. This article presents an advanced and model-independent methodology for identifying sensitive parameters of engine friction. This allows the user to investigate an unlimited number of parameters of a model whose structure and properties are prior unknown.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

A Misfire Detection Index for Four-Stroke Single-Cylinder Motorcycle Engines—Part II: Gap Distance and Gap Slope

2020-10-27
Abstract Two new misfire detection indexes for single-cylinder motorcycle engines—dubbed gap distance (GD) and gap slope (GS)—are proposed in this study. GD and GS quantify the change in engine angular acceleration using the tooth time measured by the crankshaft position sensor (CKPS). GD is defined as the product of the spacing distance I (the distance from the top dead center at the explosion stroke [TDC2] to the engine speed trend line parallel to the engine speed axis) and spacing distance II (the distance from the bottom dead center at the expansion stroke [BDC2] to the engine speed trend line parallel to the engine speed axis). GS is defined as the difference between the two slopes between the engine speed inclination line and the engine speed trend line. Here the engine speed trend line connects two engine speeds at the top dead center at the intake stroke (TDC1) of the current and subsequent cycles.
Journal Article

A Model Reference Adaptive Controller for an Electric Motor Thermal Management System in Autonomous Vehicles

2022-02-16
Abstract Technological advancements and growth in electric motors and battery packs enable vehicle propulsion electrifications, which minimize the need for fossil fuel consumption. The mobility shift to electric motors creates a demand for an efficient electric motor thermal management system that can accommodate heat dissipation needs with minimum power requirements and noise generation. This study proposes an intelligent hybrid cooling system that includes a gravity-aided passive cooling solution coupled with a smart supplementary liquid cooling system. The active cooling system contains a radiator, heat sink, variable frequency drive, alternating current (AC) fan, direct current (DC) pump, and real-time controller. A complete nonlinear mathematical model is developed using a lumped parameter approach to estimate the optimum fan and pump operations at each control interval.
Journal Article

A Modular Internal Combustion Engine Blow Rig and Cold-Flow Analysis Concept for Industrial Particle Image Velocimetry Measurements under Steady, Near-Reality Charge Air Conditions

2020-03-19
Abstract A modular, stationary IC engine blow rig for differential and integral flow field measurements using particle image velocimetry (PIV) has been developed. Unlike conventional PIV blow rigs, the given design is capable of operating under near-reality charge air conditions, that is, highly pressurized, hot intake air supply at high flow rates. Its conceptual flexibility as well as peripheral infrastructure allow for comprehensive and wide-ranging flow field analysis. Because of a modular architecture, it is neither confined to a specific cylinder head design nor limited solely to the application of PIV for differential flow field analysis. It also already accounts for direct inlet flow determination through an additional PIV access point upstream of the cylinder head. The inlet and outlet ducts have been designed with regular shapes and smooth walls, such that a digital twin-type CFD model of the blow rig is conveniently feasible.
X