Refine Your Search

Topic

Search Results

Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Journal Article

A Brief Introduction to a Novel High-Efficiency Hybrid Power System for Hybrid Electric Urban Light Commercial Vehicles

2021-03-03
Abstract The linear engine as compared with the traditional internal combustion engine has high efficiency and low emissions, so as a new type of hybrid power unit, it is very suitable for a hybrid electric vehicle to improve energy efficiency and environmental protection performances. In this article, a novel linear engine-based hybrid power system that is primarily selected for hybrid electric urban light commercial vehicles is introduced. Furthermore, the working efficiency of the proposed hybrid power system is briefly analyzed through a validation study example, and various inherent factors affecting the working efficiency of the hybrid power system are analyzed and discussed in detail. This work can provide a reference implementation for the research on the power unit for the hybrid electric urban light commercial vehicles.
Journal Article

A Climate-Change Scorecard for United States Non-commercial Driver Education

2023-05-13
Abstract In the United States (USA), transportation is the largest single source of greenhouse gas (GHG) emissions, representing 27% of total GHGs emitted in 2020. Eighty-three percent of these came from road transport, and 57% from light-duty vehicles (LDVs). Internal combustion engine (ICE) vehicles, which still form the bulk of the United States (US) fleet, struggle to meet climate change targets. Despite increasingly stringent regulatory mechanisms and technology improvements, only three US states have been able to reduce their transport emissions to the target of below 1990 levels. Fifteen states have made some headway to within 10% of their 1990 baseline. Largely, however, it appears that current strategies are not generating effective results. Current climate-change mitigation measures in road transport tend to be predominantly technological.
Journal Article

A Comparative Study of Directly Injected, Spark Ignition Engine Combustion and Energy Transfer with Natural Gas, Gasoline, and Charge Dilution

2022-01-13
Abstract This article presents an investigation of energy transfer, flame propagation, and emissions formation mechanisms in a four-cylinder, downsized and boosted, spark ignition engine fuelled by either directly injected compressed natural gas (DI CNG) or gasoline (GDI). Three different charge preparation strategies are examined for both fuels: stoichiometric engine operation without external dilution, stoichiometric operation with external exhaust gas recirculation (EGR), and lean burn. In this work, experiments and engine modelling are first used to analyze the energy transfer throughout the engine system. This analysis shows that an early start of fuel injection (SOI) improves fuel efficiency through lower unburned fuel energy at low loads with stoichiometric DI CNG operation.
Journal Article

A Comparative Study of Equivalent Factor Optimization Based on Heuristic Algorithms for Hybrid Electric Vehicles

2022-08-12
Abstract The equivalent consumption minimization strategy (ECMS) is an instantaneous optimization method implemented online for hybrid electric vehicles (HEVs) to improve fuel economy. To fulfill the near-optimal performance of ECMS, equivalent factors (EFs) must be well tuned for different powertrains and driving cycles. This study proposes a hierarchical offline optimization framework which tunes the penalty value of state of charge (SOC) balance in the outer layer and optimizes EFs based on heuristic algorithms in the inner layer. A comprehensive analysis is conducted to evaluate three heuristic algorithms, including the genetic algorithm (GA), the nonlinear-inertia-decreasing particle swarm optimization algorithm (NLPSO), and the novel firefly algorithm (FA). The traversal optimization method (TOM) is chosen as the benchmark. Besides, a sensitivity analysis is carried out to reveal the impact of the penalty value on the battery SOC balance.
Journal Article

A Comprehensive Study of Vibration Suppression and Optimization of an Electric Power Steering System

2021-02-11
Abstract Electric power steering (EPS) systems have become the most advantageous steering system used in vehicles. They provide better fuel efficiency and a more compact design over traditional hydraulic power steering (HPS) systems. However, EPS systems are afflicted with unwanted noise and vibration that can undermine the safety of drivers. This article presents a mathematical framework for vibration analysis in a column-type EPS system. The steering column is modeled as a continuous clamped column. The equations of motion are derived using Hamilton’s principle, and explicit expressions are presented for the frequency and transmissibility equations. A three-degrees-of-freedom (3-DOF) dynamic model is also presented by an approximation of the stiffness, damping, and mass of the steering column. The results of the proposed analytical models are validated using ANSYS simulation.
Journal Article

A Contribution to Improving the Thermal Management of Powertrain Systems

2019-10-08
Abstract This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
Journal Article

A Coupling Architecture for Remotely Validating Powertrain Assemblies

2023-03-15
Abstract Among the myriad of potential hybrid powertrain architectures, selecting the optimal for an application is a daunting task. Whenever available, computer models greatly assist in it. However, some aspects, such as pollutant emissions, are difficult to model, leaving no other option than to test. Validating plausible options before building the powertrain prototype has the potential of accelerating the vehicle development even more, doing so without shipping components around the world. This work concerns the design of a system to virtually couple—that is, avoiding physical contact—geographically distant test rigs in order to evaluate the components of a powertrain. In the past, methods have been attempted, either with or without assistance of mathematical models of the coupled components (observers). Existing methods are accurate only when the dynamics of the systems to couple are slow in relation to the communication delay.
Journal Article

A Cylinder Pressure-Based Knock Detection Method for Pre-chamber Ignition Gasoline Engine

2021-02-26
Abstract A pre-chamber ignition system has the potential to reduce the burn duration of lean-burn gasoline engine combustion and can achieve a reduced knock occurrence from the distributed ignition sources. Pre-chamber ignition produces high-velocity turbulent jets, and these jets often reach sonic velocity and produce shock waves inside the combustion chamber. These shock waves make knock detection difficult with a conventional surface-mounted acoustic knock sensor. This article discusses how an acoustic knock sensor works with a pre-chamber ignition and evaluates different cylinder pressure-based knock detection strategies and proposes a method that eliminates the influence of jet-induced oscillations on knock detection.
Journal Article

A Decentralized Multi-agent Energy Management Strategy Based on a Look-Ahead Reinforcement Learning Approach

2021-11-05
Abstract An energy management strategy (EMS) has an essential role in ameliorating the efficiency and lifetime of the powertrain components in a hybrid fuel cell vehicle (HFCV). The EMS of intelligent HFCVs is equipped with advanced data-driven techniques to efficiently distribute the power flow among the power sources, which have heterogeneous energetic characteristics. Decentralized EMSs provide higher modularity (plug and play) and reliability compared to the centralized data-driven strategies. Modularity is the specification that promotes the discovery of new components in a powertrain system without the need for reconfiguration. Hence, this article puts forward a decentralized reinforcement learning (Dec-RL) framework for designing an EMS in a heavy-duty HFCV. The studied powertrain is composed of two parallel fuel cell systems (FCSs) and a battery pack.
Journal Article

A Deep Learning-Based Strategy to Initiate Diesel Particle Filter Regeneration

2021-12-13
Abstract Deep learning (DL)-based approaches enable unprecedented control paradigms for propulsion systems, utilizing recent advances in high-performance computing infrastructure connected to modern vehicles. These approaches can be employed to optimize diesel aftertreatment control systems targeting the reduction of emissions. The optimization of the Trapped Soot Load (TSL) reduction in the Diesel Particulate Filter (DPF) is such an example. As part of the diesel aftertreatment system, the DPF stores the soot particles resulting from the combustion process in the engine. Periodically, the stored soot is oxidized during a DPF regeneration event. The efficiency of such a regeneration influences the fuel economy, and potentially the service interval of the vehicle. The quality of a regeneration depends on the operating conditions of the DPF, the engine, and the ability to complete the regeneration event.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

A Method for the Estimation of Cooling System and Driving Performance for Fuel Cell Vehicles Based on Customer Fleet Data

2021-10-28
Abstract An efficient vehicle thermal management is essential to fulfil the requirements of fuel consumption and passenger comfort. Therefore, the design and dimensioning of the cooling system is under high scrutiny in new vehicle architectures. With increasing electrification, no longer just the load peaks define the design frame but also the dynamics of thermal loading and recovery. Consequently, electrified vehicle architectures such as plug-in hybrid fuel cell vehicles demand for alternative approaches regarding the design of cooling systems and the definition of the decisive criteria. This article presents a new methodology for designing the cooling system related to its demands in customer operation. The recorded fleet data is first filtered for high load driving, using the so-called thermal load integral (LI) as a filter criterion.
Journal Article

A Method of Assessing and Reducing the Impact of Heavy Gasoline Fractions on Particulate Matter Emissions from Light-Duty Vehicles

2022-05-10
Abstract The hydrocarbons constituting the heavy tail of gasoline are key contributors to particulate matter (PM) emissions from spark-ignition (SI) engines. They are predominantly aromatic and, to a significant degree, bicyclic aromatic. For example, above a boiling point of 400°F, the content of bicyclic compounds in the United States (US) summer E10 regular-grade gasoline exceeds 50%v. Various gasoline parameters, such as the PM Index, Particulate Evaluation Index (PEI), Particulate and Soot Correlation Equation (PASCE), or Threshold Sooting Index (TSI), have been proposed as predictors of PM emissions from SI engines. In particular, the PM Index, whose value is dominated by the content of heavy aromatics and which, so far, has yielded the most predictive PM emissions models, appears to be the best metric to achieve this objective.
Journal Article

A Methodology for the Reverse Engineering of the Energy Management Strategy of a Plug-In Hybrid Electric Vehicle for Virtual Test Rig Development

2021-09-22
Abstract Nowadays, the need for a more sustainable mobility is fostering powertrain electrification as a way of reducing the carbon footprint of conventional vehicles. On the other side, the presence of multiple energy sources significantly increases the powertrain complexity and requires the development of a suitable Energy Management System (EMS) whose performance can strongly affect the fuel economy potential of the vehicle. In such a framework, this article proposes a novel methodology to reverse engineer the control strategy of a test case P2 Plug-in Hybrid Electric Vehicle (PHEV) through the analysis of experimental data acquired in a wide range of driving conditions. In particular, a combination of data obtained from On-Board Diagnostic system (OBD), Controller Area Network (CAN)-bus protocol, and additional sensors installed on the High Voltage (HV) electric net of the vehicle is used to point out any dependency of the EMS decisions on the powertrain main operating variables.
Journal Article

A Misfire Detection Index for Four-Stroke Single-Cylinder Motorcycle Engines—Part II: Gap Distance and Gap Slope

2020-10-27
Abstract Two new misfire detection indexes for single-cylinder motorcycle engines—dubbed gap distance (GD) and gap slope (GS)—are proposed in this study. GD and GS quantify the change in engine angular acceleration using the tooth time measured by the crankshaft position sensor (CKPS). GD is defined as the product of the spacing distance I (the distance from the top dead center at the explosion stroke [TDC2] to the engine speed trend line parallel to the engine speed axis) and spacing distance II (the distance from the bottom dead center at the expansion stroke [BDC2] to the engine speed trend line parallel to the engine speed axis). GS is defined as the difference between the two slopes between the engine speed inclination line and the engine speed trend line. Here the engine speed trend line connects two engine speeds at the top dead center at the intake stroke (TDC1) of the current and subsequent cycles.
Journal Article

A Model Reference Adaptive Controller for an Electric Motor Thermal Management System in Autonomous Vehicles

2022-02-16
Abstract Technological advancements and growth in electric motors and battery packs enable vehicle propulsion electrifications, which minimize the need for fossil fuel consumption. The mobility shift to electric motors creates a demand for an efficient electric motor thermal management system that can accommodate heat dissipation needs with minimum power requirements and noise generation. This study proposes an intelligent hybrid cooling system that includes a gravity-aided passive cooling solution coupled with a smart supplementary liquid cooling system. The active cooling system contains a radiator, heat sink, variable frequency drive, alternating current (AC) fan, direct current (DC) pump, and real-time controller. A complete nonlinear mathematical model is developed using a lumped parameter approach to estimate the optimum fan and pump operations at each control interval.
Journal Article

A New Approach for Development of a High-Performance Intake Manifold for a Single-Cylinder Engine Used in Formula SAE Application

2019-07-26
Abstract The Formula SAE (FSAE) is an international engineering competition where a Formula style race car is designed and built by students from worldwide universities. According to FSAE regulation, an air restrictor with circular cross section of 20 mm for gasoline-fuelled and 19 mm for E-85-fuelled vehicles is to be incorporated between the throttle valve and engine inlet. The sole purpose of this regulation is to limit the airflow to the engine used. The only sequence allowed is throttle valve, restrictor and engine inlet. A new approach of combining ram theory and acoustic theory methods are investigated to increase the performance of the engine by designing an optimized intake runner for a particular engine speed range and an optimized plenum volume in this range. Engine performance characteristics such as brake power, brake torque and volumetric efficiency are taken into considerations.
Journal Article

A Novel Approach to Energy Management Strategy for Hybrid Electric Vehicles

2021-02-25
Abstract The principal issue in choosing an energy management strategy (EMS) for hybrid electric vehicles (HEVs) has been the way of determining the optimal share of electric energy in hybrid drive. In this article, a novel EMS is proposed that, along with maximum engine efficiency in the hybrid drive, can optimize the share of battery energy for the maximum efficiency of vehicle power train expanded with an imaginary power plant that, by delivering the electric energy to a grid, feeds the vehicle battery. It is proved that the expanded power train efficiency has the local maximum for a wide range of wheel power demand. The relation between the wheel power demand in hybrid drive, the share of battery energy, and the maximum efficiency of the expanded power train is conducted offline. Downloaded to the onboard control system, it enables the operation with the instantaneously optimal share of battery energy and the control system to operate with the low computational load.
X