Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 15802
Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Technical Paper

04Road Feel Feedback Design for Vehicle Steer-by-Wire via Electric Power Steering

2013-11-27
2013-01-2898
A new road feel feedback control design of steer-by-wire (SBW) is proposed, which is produce the steering feel of conventional vehicle with equipped electronic power steering (EPS) system, due to SBW system removes mechanical linkages between steering system and front wheels. A dynamic model is established to study the road feel generation and deal with the need of computed rack force of steer system. Based on the analysis of the assisting characteristic and the active damping control strategy of the EPS system, an integrated road feel algorithm is proposed. For rack force is difficult to measure, an estimator is presented to estimate rack force by Kalman filter (KF). The hardware-in-the-loop simulation (HILS) test bench results show that the proposed road feel control design make drivers get road feel information and SBW system can improve the vehicle maneuverability and comfortably.
Technical Paper

0D-1D Coupling for an Integrated Fuel Economy Control Strategy for a Hybrid Electric Bus

2011-09-11
2011-24-0083
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
Technical Paper

1-D Thermal Simulation and Experimental Validation of Li-Ion Battery Pack Liquid Cooling System

2023-09-14
2023-28-0012
The battery cooling system is one of the most critical parts for the safe and efficient operation of the Li-ion battery pack in EVs. Battery liquid cooling system is most commonly used. This paper represents a comprehensive study of the electric vehicle battery liquid cooling system design and performance using the 1D tool and experimental validation. The 1D model includes the battery thermal load, cooling system components, and different ambient conditions. The cooling system components are calibrated using the experimental performance data of the components. The 1D model is used to evaluate the effect of fan speed, ambient temperature, compressor speed, and coolant flow rate on the battery cooling system and to optimize the component sizing. The results are then experimentally validated in a climate chamber, and the simulation results show good agreement with experimental results. The study's findings provide a good understanding of the Li-ion liquid cooling system.
Technical Paper

100 Million Smart Assistants on Wheels…

2006-10-16
2006-21-0014
Cars are undergoing major design changes, and typical usage scenarios are already showing significant departures from the main goal. What used to be mostly a transportation means is quickly becoming a mobile micro-world that replicates features, functions and services traditionally available in homes and offices. This paper will identify industry trends in the Driver-Machine-Interface area, and will try to anticipate how quickly and to what extent cars will morph into smart assistants to make the driving experience richer and even more enjoyable than it is today.
Technical Paper

1000 kW Sodium-Sulfur Battery Pilot Plant: Its Operation Experience at Tatsumi Test Facility

1992-08-03
929055
Since 1978, the Agency of Industrial Science and Technology (AIST) of MITI has promoted research and development of “Large-Scale Energy Conservation Technology” popularly known as the “Moonlight Project”. As the first step, “system technology tests” using improved lead acid batteries started at Kansai Electric's Tatsumi Electric Energy Storage System Test Plant on October 1, 1986. The results showed that this system can work not only as a load-leveling apparatus but also as a high-quality power source which can support the utility power system with its load frequency control and voltage regulation capabilities. As the second step of these R&D activities, a 1MW/8MWh sodium-sulfur battery pilot plant was constructed at the same Tatsumi site. On July 11, 1991, 1000 kW× 8H facility, the largest of its type in the world, was completed and started operation. This paper describes the construction experience and operation results of the pilot plant.
Technical Paper

110 Ton Payload on Two Axles with Hydro-Mechanical Drive

1966-02-01
660237
Late developments in tires and in lightweight, high horsepower engines and transmissions have enabled the earthmoving and mining industry equipment manufacturers to design and produce several types of preproduction 100-ton capacity trucks. A straight-forward approach to the design of a 110-ton end dump truck on two axles with a hydro-mechanical drive was followed by KW-Dart Truck Co. to produce a low cost per ton-mile vehicle.
Technical Paper

12-Volt Vacuum Fluorescent Display Drive Circuitry for Electronically Tuned Radios

1986-03-01
860126
The trend towards battery voltage vacuum fluorescent displays continues the technological advances in design and construction of VFD's, as they are applied to the automobile environment. With the ever increasing use of electronic displays for electronically tuned radios (ETR's), compact disc (CD) players, and other entertainment systems, advances in battery voltage displays and their associated drive circuitry have become a necessity. With the inherent advantages of low voltage operation and high information density, VFD's will continue to dominate the automobile audio markets. This paper will discuss battery voltage displays, the basic circuitry necessary to operate a vacuum fluorescent display, and comment on the “off the shelf” controller and driver circuitry available.
Technical Paper

120VAC Power Inverters

1983-02-01
830131
Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Technical Paper

12V/14V to 36V/42V Automotive System Supply Voltage Change and the New Technologies

2002-11-19
2002-01-3557
This paper shows some aspects of the automotive voltage energy system level shift from 14 to 42 Volts. New features and prospective emissions/fuel economy requirements are creating electrical power needs in future automobiles, which today's conventional system cannot adequately supply at 14 Vdc (nominal, with a 12 Volt battery). It will be necessary to provide electric motors, DC/DC converters, inverters, battery management, and other electronic controls to meet higher voltage requirements. Suppliers must now include 42 Volt components and systems within their product range and make these new components as light, small, and cost efficient as possible. This paper is a compilation of several published works aiming to offer a synthesis to introduce this subject to the Brazilian Automotive Market.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Technical Paper

1553 RT Mechanizations for Data Sample Consistency and Multi-Message Transfers

1993-04-01
931600
System requirements and Interface Control Drawings (ICDs) make a variety of demands for MIL-STD-1553 remote terminals (RTs). Among these requirements are the need to ensure data integrity and sample data consistency, the need to perform bulk (multi-message) data transfers, and the need to offload the operation of the host CPU to the greatest degree possible. This latter requirement is reflected in such specifications as CPU spare bandwidth. The latest 1553 terminals provide a variety of choices for performing the different types of transfers. This paper provides a discussion of the hardware and software techniques for achieving these objectives. Three different schemes for RT subaddress memory management are presented: single message, circular buffer, and double buffered. For receive and transmit messages, these include fully synchronous single message transfers, asynchronous single message transfers, and multi-message transfers.
Technical Paper

16-Channel Portable Data Acquisition and Reduction System

1984-04-01
840764
A Microprocessor Data Acquisition System has been designed to be cab-mounted in vehicles or used in laboratories to acquire up to 16 channels of test data. This data may be acquired as time-at-level histograms in one or two dimensions with min-max-mean data recovery, time histories, or peaks and valleys stored on digital tape. The system includes a microcomputer-based Playback/Support Box that simplifies playback of data tapes for computer analysis or stand-alone data plotting using a graphics terminal.
Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1984 Continental Mark VII/Lincoln Continental Electronically-Controlled Air Suspension (EAS) System

1984-02-01
840342
This paper describes the Electronic Air Suspension (EAS) System developed by Ford Motor Company. Design trade-offs between load-carrying capacity necessary with conventional steel spring suspension systems and riding comfort are avoided when today's microcomputer technology is combined with a leveling air spring suspension. An electric air compressor with regenerative air dryer, three electronic “Hall Effect” height sensors, four air springs with integral solenoids, and a control module with a single chip microcomputer are the key EAS System components discussed.
Technical Paper

1987 Thunderbird Turbo Coupe Programmed Ride Control (PRC) Suspension

1987-02-01
870540
This paper describes Programmed Ride Control (PRC), the automatic adjustable shock absorber system designed and patented by Ford Motor Company. The system utilizes low shock absorber damping under normal driving conditions to provide soft boulevard ride, automatically switching to firm damping when required for improved handling. The system's microprocessor control module “learns” where the straight ahead steering wheel position is, allowing the system to respond to absolute steering wheel angle. A closed loop control strategy is used to improve system reliability and to notify the driver in the event of a system malfunction. Fast acting rotary solenoids control the damping rate of the shock absorbers.
Technical Paper

1988 Lincoln Continental Variable-Assist Power Steering System

1988-02-01
880707
Conventional power steering systems can be “tailored” to provide light steering efforts for parking and low speed, or high steering efforts for stability and “road feel” at high speed. In either case, the customer's preferred steering efforts are not provided at all times. Compromises are required. The need for a speed-sensitive steering effort system has prompted the introduction of several innovative variable-assist steering systems in the past few years, which are currently used in some European and Japanese vehicles. This paper describes a Ford-patented variable-assist system used on the 1988 Lincoln Continental, the first application of vehicle speed-sensitive steering to an American-designed and manufactured vehicle. The Ford Variable-Assist Power Steering System is a “rotary steering valve” system. It uses a modification of the current rotary valve to provide low steering efforts (low torsion bar twist) at low speed and higher efforts (more twist) as vehicle speed increases.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Journal Article

1D Mathematical Model Development for Prediction and Mitigation of Vehicle Pull Considering Suspension Asymmetry and Tire Parameters

2021-09-22
2021-26-0502
Error in suspension asymmetry or tire parameters may lead to vehicle drifting laterally from its intended straight-line path, which is called vehicle pull. Driver then needs to apply constant steering correction to maintain the vehicle in straight line which will lead to high driver fatigue and deteriorate driving experience. Manufacturing a perfectly symmetric suspension system is impractical, however an insight into the manufacturing tolerances of suspension system at the early design stage can be extremely useful. Also tire force and moment parameters at straight line operation and its maximum allowable variations will help in defining the tire parameter specifications and tolerances. The objective of this study was to develop a 1D model of suspension and tire system which can predict the torque experienced in steering and drift of the vehicle from straight line due to the tire force and moment and asymmetric suspension geometry.
X