Refine Your Search

Topic

Search Results

Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Technical Paper

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

2020-04-14
2020-01-0306
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency. In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion.
Technical Paper

An Experimental Investigation of Injection and Operating Strategies on Diesel Single Cylinder Engine under JP-8 and Dual-Fuel PCCI Combustion

2015-04-14
2015-01-0844
The alternative fuel jet propellant 8 (JP-8, NATO F-34) can be used as an auto-ignition source instead of diesel. Because it has a higher volatility than diesel, it provides a better air-fuel premixing condition than a conventional diesel engine, which can be attributed to a reduction in particulate matter (PM). In homogeneous charged compression ignition (HCCI) or dual-fuel premixed charge compression ignition (PCCI) combustion or reactivity controlled compression ignition (RCCI), nitrogen oxides (NOx) can also be reduced by supplying external exhaust gas recirculation (EGR). In this research, the diesel and JP-8 injection strategies under conventional condition and dual-fuel PCCI combustion with and without external EGR was conducted. Two tests of dual-fuel (JP-8 and propane) PCCI were conducted at a low engine speed and load (1,500 rpm/IMEP 0.55 MPa). The first test was performed by advancing the main injection timing from BTDC 5 to 35 CA to obtain the emissions characteristics.
Journal Article

An Experimental Study on the Effect of Stroke-to-Bore Ratio of Atkinson DISI Engines with Variable Valve Timing

2018-04-03
2018-01-1419
In this study, fundamental questions in improving thermal efficiency of spark-ignition engine were revisited, regarding two principal factors, that is, stroke-to-bore (S/B) ratio and valve timings. In our experiment, late intake valve closing (LIVC) camshaft and variable valve timing (VVT) module for valve timing control were equipped in the single-cylinder, direct-injection spark-ignition (DISI) engine with three different S/B ratios (1.00, 1.20, and 1.47). In these three setups, displacement volume and compression ratio (CR) were fixed. In addition, the tumble ratio for cylinder head was also kept the same to minimize the flow effect on the flame propagation caused by cylinder head while focusing on the sole effect of changing the S/B ratio.
Technical Paper

An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines

2018-04-03
2018-01-0213
Increasing compression ratio is essential for developing future high-efficiency engines due to the intrinsic characteristics of spark-ignited engines. However, it also causes the unfavorable, abnormal knocking phenomena which is the auto-ignition in the unburned end-gas region. To cope with regulations, many researchers have been experimenting with various methods to suppress knock occurrence. In this paper, it is shown that cooling the combustion chamber using coolants, which is one of the most practical methods, has a strong effect on knock mitigation. Furthermore, the relationship between thermal boundary and coolant temperatures is shown. In the beginning of this paper, knock metrics using an in-cylinder pressure sensor are explained for readers, even though entire research studies cannot be listed due to the innumerableness. The coolant passages for the cylinder head and the liner were separated to examine independent cooling strategies.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Analysis of Cyclic Variation and the Effect of Fuel Stratification on Combustion Stabilityin a Port Fuel Injection (PFI) CAI Engine

2009-04-20
2009-01-0670
CAI engine is well known to be advantageous over conventional SI engines because it facilitates higher engine efficiency and lower emission (NOx and smoke). However, its limited operation range, large cyclic variation, and difficulty in heat release control are still unresolved obstacles. Previous studies showed that a high load range of the CAI engine is limited mainly by the combustion noise caused by a stiff pressure rise (knock), and that a low load range is also limited by the combustion instability caused by the high dilution of residual gas. In this study, the characteristics of each cycle were analyzed to find the cause of the cycle variation at the high load limit of CAI operation. Moreover, to improve combustion stability, we tested the in-cylinder fuel stratification by applying nonsymmetrical fuel injection to the intake port. Experiments were performed on a PFI single cylinder research engine equipped with dual CVVT and low lift (2 mm) cam shaft with NVO strategy.
Technical Paper

Analysis of the Correlation between Flow and Combustion Characteristics in Spark-Ignited Engine

2021-04-06
2021-01-0463
As global emission standards are becoming more stringent, it is necessary to increase thermal efficiency through the high compression ratio in spark-ignited engines. Various studies are being conducted to mitigate knocking caused by an increased compression ratio, which requires an understanding of the combustion phenomena inside the combustion chamber. In particular, the in-cylinder flow is a major factor affecting the entire combustion process from the generation to the propagation of flames. In the field of spark-ignited engine research, where interest in the concept of lean combustion and the expansion of the EGR supply is increasing, flow analysis is essential to ensure a rapid flame propagation speed and stable combustion process. In this study, the flow around the spark plug was measured by the Laser Doppler Velocimetry system, and the correlation with combustion in spark-ignited engines was analyzed.
Technical Paper

Closed-Loop Control Method for Monitoring and Improving the Diesel Combustion Noise

2016-06-15
2016-01-1770
This paper presents two closed-loop control methods for monitoring and improving the combustion behavior and the combustion noise on two 4-cylinder diesel engines, in which an in-cylinder pressure and an accelerometer transducer are used to monitor and control them. Combustion processes are developed to satisfy the stricter and stricter regulations on emissions and fuel consumption. These combustion processes are influenced by the factors such as engine durability, driving conditions, environmental influences and fuel properties. Combustion noise could be increased by these factors and is detrimental to interior sound quality. Therefore, it is necessary to develop robust combustion behaviors and combustion noise. For this situation, we have developed two closed-loop control methods. Firstly, a method using in-cylinder pressure data was developed for monitoring and improving the combustion noise of a 1.7L engine. A new index using the values calculated from the data was proposed.
Technical Paper

Closed-Loop Control for Diesel Combustion Noise Using Engine Vibration Signals

2015-06-15
2015-01-2297
The combustion noise of a diesel engine can be deteriorated by combustion characteristics such as the maximum rate of heat release and the start of combustion. These combustion characteristics in turn are influenced by the factors such as the engine NVH durability, driving conditions, environmental factors and fuel properties. Therefore, we need to develop the robust combustion noise that is insensitive to these factors. To achieve this aim, methods for predicting combustion characteristics has been developed by analyzing the vibration signal measured from the engine cylinder block. The closed-loop control of injection parameters through combustion characteristics prediction has been performed to produce the desired engine combustion performance. We constructed an ECU logic for the closed-loop control and verified the design in a diesel passenger car. We also evaluated the effect of combustion noise and fuel consumption by applying the closed-loop control.
Technical Paper

Computational and Optical Investigation of Liquid Fuel Film on the Cylinder Wall of an SI Engine

2003-03-03
2003-01-1113
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this work, the fuel film formation model was developed to investigate the distribution of wall fuel film on the cylinder wall of an SI engine. By integrating the continuity, momentum, and energy equations along the direction of fuel film thickness the simulation of the fuel film formation was carried out in the test rig. Spray impingement and fuel film models were incorporated into the computational fluid dynamics code, STAR-CD to calculate fuel film thickness and distribution of fuel film on the cylinder wall. With a laser-induced fluorescence method, the two-dimensional visualization of liquid fuel films was carried out to validate the simulation results.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Development of a Vehicle System Model for the First Medium- and Heavy-Duty Commercial Vehicle Fuel Efficiency Standards in Korea

2015-09-29
2015-01-2774
To properly respond to demands to reduce national energy consumption and meet greenhouse gas emission targets based on environment policy, the Ministry of Trade, Industry, and Energy of Korea formed a research consortium consisting of government agencies and academic and research institutions to establish the first fuel efficiency standards for medium- and heavy-duty (MHD) commercial vehicles. The standards are expected to be introduced in 2017 as Phase 1 of the plan and will regulate trucks with a gross vehicle weight in excess of 3.5 tons and buses with a carrying capacity of more than 16 persons. Most MHD commercial vehicles are custom-made and manufactured in diversified small-quantity batch production systems for commercial or public use, resulting in difficulties in utilizing mandatory vehicle tests for fuel efficiency evaluations.
Technical Paper

Emission Reduction using a Close Post Injection Strategy with a Modified Nozzle and Piston Bowl Geometry for a Heavy EGR Rate

2012-04-16
2012-01-0681
As EURO-6 regulations will be enforced in 2014, the reduction of NOx emission while maintaining low PM emission levels becomes an important topic in current diesel engine research. EGR is the most effective way to reduce the NOx emission because EGR has a dilution and thermal effect as a means to reduce the oxygen concentration and combustion temperature. Although EGR is useful in reducing the NOx emission, it suffers from a higher level of CO and THC emissions, which indicates a low combustion efficiency and poor fuel consumption. Therefore, in this research, a close post injection strategy, which is implemented using main injection and post injection, is introduced to improve combustion efficiency and to reduce PM emission under a high EGR rate. In addition, a modified hardware configuration using a double-row nozzle and a two-staged piston bowl geometry is adapted to improve the effect of the close post injection.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Journal Article

Fuel Economy Research on Series-Type HEV Intracity Buses with Different Traction Motor Capacity Combinations

2012-04-16
2012-01-1035
Research on HEV (hybrid electric vehicle) intracity buses has become a topic of interest because the well-known service routes of intracity buses and the frequent stop/go pattern make the energy management of the vehicle straightforward. Thus, the energy flow and the energy management of the intracity bus have been studied extensively in order to improve fuel economy. However, the HEV buses that have been studied previously were equipped with a single traction motor or with dual motors with the same capacity for the convenience of the equipment without considering the motoring or generating efficiency of the traction motor. Therefore, the energy flow from the engine/generator unit to the traction motor that has been optimized by many kinds of energy distribution strategies could not be transferred to the wheels in the most efficient manner. This paper investigates this aspect of the energy flow.
Technical Paper

Measurements and Modeling of Residual Gas Fraction in SI Engines

2001-05-07
2001-01-1910
The residual gas in SI engines is one of important factors on emission and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and there are deeply related with combustion stability, especially at Idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. A model for predicting the residual gas fraction has been formulated in this paper. The model accounts for the contribution due to the back flow of exhaust gas to the cylinder during valve overlap and it includes in-cylinder pressure prediction model during valve overlap. The model is derived from the one dimension flow process during overlap period and a simple ideal cycle model.
Technical Paper

Modeling of Unburned Hydrocarbon Oxidation in Engine Conditions using Modified One-step Reaction Model

2007-08-05
2007-01-3536
Modeling of unburned hydrocarbon oxidation in an SI engine was performed in engine condition using modified one-step oxidation model. The new one-step equation was developed by modifying the Arrhenius reaction rate coefficients of the conventional one-step model. The modified model was well matched with the results of detailed chemical reaction mechanism in terms of 90 % oxidation time of the fuel. In this modification, the effect of pressure and intermediate species in the burnt gas on the oxidation rate investigated and included in developed one-step model. The effect of pressure was also investigated and included as an additional multiplying factor in the reaction equation. To simulate the oxidation process of piston crevice hydrocarbons, a computational mesh was constructed with fine mesh density at the piston crevice region and the number of cell layers in cylinder was controlled according to the motion of piston.
Technical Paper

New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine

2019-04-02
2019-01-0720
Most research of internal combustion engine focuses on improving the fuel economy and reducing exhaust emissions to satisfy regulations and marketability. Engine combustion is a key factor in determining engine performance. Generally, engine operating parameters are optimized for the best performance and less exhaust emissions. However, abnormal combustion results in engine conditions that are far from an optimized operation. Abnormal combustion, including a misfire, can happen for a variety of reasons, such as superannuated vehicles, extreme changes in the driving environment, etc. Abnormal combustion causes serious deterioration of not only noise, vibration and harshness (NVH), but also the fuel economy and exhaust emission. NVH stands for unwanted noise, vibration and harshness from the vehicle. The misfiring especially deteriorates vehicle comfortability. Abnormal combustion at one cylinder breaks the exciting force balance between cylinders and causes unexpected vibration.
Technical Paper

Numerical Analysis of Pollutant Formation in Direct-Injection Spark-Ignition Engines by Incorporating the G-Equation with a Flamelet Library

2014-04-01
2014-01-1145
Direct-injection spark-ignition (DISI) engines are regarded as a promising technology for the reduction of fuel consumption and improvement of engine thermal efficiency. However, due to direct injection, the shortened fuel-air mixing duration leads to a spatial gradient of the equivalence ratio, and these locally rich regions cause the formation of particulate matter. In the current study, numerical investigations on pollutant formation in a DISI engine were performed using combined flamelet models for premixed and diffusion flames. The G-equation model for partially premixed combustion was improved by incorporating the laminar flamelet library. Gasoline fuel was represented as a ternary mixture of gasoline surrogate and its laminar flame speeds were obtained under a wide range of engine operating conditions.
X