Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Journal Article

A New Model to Describe the Heat Transfer in HCCI Gasoline Engines

2009-04-20
2009-01-0129
In this work, heat loss was investigated in two different HCCI single cylinder engines. Thermocouples were adapted to the surfaces of the cylinder heads and the temperature oscillations were detected in a wide range of the engine operation maps. The resultant heat transfer profiles were compared to the heat losses predicted by existing models. As major discrepancies were stated, a new phenomenological model was developed that is well-manageable and describes the heat loss in HCCI mode more precisely than existing models. To analyze the insulating effect of deposits, the heat transfer equation was solved analytically by an approach that allows consideration of multiple layers with different material properties and thickness. This approach was used for the first time in conjunction with engines to calculate the heat flux at the surface of deposits and the deposit thickness.
Technical Paper

A Study of the In-Nozzle Flow Characteristic of Valve Covered Orifice Nozzles for Gasoline Direct Injection

2005-10-24
2005-01-3684
For spark ignition engines, the most effective way to reduce the overall fuel consumption and CO2 emissions respectively is the implementation of gasoline direct injection technology. In comparison to the current wall and air guided systems, the direct injection system of the second generation - the spray guided DI- is the most promising one with respect to fuel economy and emission. In order to exploit its full potential, a thorough combustion process development regarding injector and spark plug design and their positioning within the combustion chamber is essential. Especially multihole injectors offer many degrees of freedom with regard to the nozzle shape and spray pattern. To reduce the development work and costs necessary to identify the ideal nozzle characteristic and spray pattern, reliable CFD models are necessary.
Technical Paper

An Experimental Study of Homogeneous Charge Compression Ignition (HCCI) with Various Compression Ratios, Intake Air Temperatures and Fuels with Port and Direct Fuel Injection

2003-06-23
2003-01-2293
A promising approach for reducing both NOx- and particulate matter emissions with low fuel consumption is the so called homogeneous charge compression ignition (HCCI) combustion process. Single-cylinder engine tests were carried out to assess the influence of several parameters on the HCCI combustion. The experiments were performed both with port fuel injection (PFI) and with direct injection (DI) under various compression ratios, intake air temperatures and EGR-rates. Special emphasis was put on the fuel composition by using different gasoline and diesel fuels as well as n-heptane. Besides engine out emissions (CO2, CO, NO, O2, HC, soot) and in-cylinder pressure indication for burning process analysis, the combustion itself was visualised using an optical probe.
Technical Paper

Application of Multifiber Optics in Handheld Power Tools with High Speed Two-Stroke Gasoline Engines

2006-11-13
2006-32-0060
When developing effective exhaust emission reduction measures, a better understanding of the complex working cycle in crankcase scavenged two-stroke gasoline engines. However, in a two-stroke gasoline engine detailed measurement and analysis of combustion data requires significantly more effort, when compared to a lower speed four-stroke engine. Particularly demanding are the requirements regarding the high speed (>10,000 rpm) which inevitably goes along with heavy vibrations and high temperatures of the air cooled cylinders. Another major challenge to the measuring equipment is the increased cleaning demand of the optical sensor surface due to the two-stroke gasoline mixture. In addition, the measuring equipment has to be adapted to the small size engines. Therefore, only a fiber optical approach can deliver insight into the cylinder for analyzing the combustion performance.
Technical Paper

Application of Particle Image Velocimetry for Investigation of Spray Characteristics of an Outward Opening Nozzle for Gasoline Direct Injection

2006-10-16
2006-01-3377
The hollow cone spray from a high pressure outward opening nozzle was investigated inside a pressure vessel by means of particle image velocimetry (PIV). The flow velocities of the air outside the spray were measured via PIV in combination with fluorescent seeding particles and optical filters. The high pressure piezo electric injector has an annular nozzle to provide a hollow cone spray with an angle of about 90°. During injection a very strong and stable vortex structure is induced by the fuel spray. Besides the general spray/air interaction, the investigation of double and triple fuel injections was the main focus of this study.
Technical Paper

Application of a New Optical Fiber Technique for Flame Propagation Diagnostics in IC Engines

1988-10-01
881637
A multi-optical fiber measurement technique is presented which can determine spatial flame propagation with a high temporal resolution. With this measurement technique it is possible to investigate the combustion process in both Diesel and SI engines. The measurement technique can also be applied for the detection of flame propagation in research engines and in actual production engines for performing analysis of special problems such as knocking combustion, combustion chamber design studies which concern flame propagation, the influence of engine parameters on flame propagation, ignition and inflammability behavior. The new measurement technique is discussed in detail and the application of optical measuring points in the combustion chamber walls is demonstrated. A special non-contacting optical transmission system has been developed for the observation of flame propagation.
Technical Paper

Comparative Study to Assess the Soot Reduction Potential of Different In-Cylinder Methods and Exhaust Gas Aftertreatment Systems for Direct Injection Diesel Engines

2007-10-29
2007-01-4016
In this study different methods to reduce the soot emissions of Diesel engines were investigated and compared to obtain their soot reduction potential. Apart from investigations on the practically usable engine map area with so called homogeneous charge compression ignition (HCCI) combustion processes a new heterogeneous combustion processes was developed and investigated which offers significantly reduced soot emissions while still applicable in the entire engine map. For the HCCI experiments the emphasis was put on the achievable engine load range when using conventional injector nozzles which still allow a conventional heterogeneous engine operation.
Journal Article

Effect of different nozzle geometries using Pure Rapeseed Oil in a modern Diesel engine on combustion and exhaust emissions

2011-08-30
2011-01-1947
Rapeseed oil can be a possible substitute for fossil fuel in Diesel engines. Due to different physical properties of rapeseed oil like higher viscosity and higher compressibility compared to diesel fuel, rapeseed oil cannot be easily used in conventional Diesel engines without modifications. Especially incomplete combustion leads to deposits in the combustion chamber and higher exhaust gas emissions. These unfavorable characteristics are caused primarily by insufficient mixture preparation. The adjustment of the injection system will improve the mixture preparation and the combustion of a Diesel engine, operated with rapeseed oil. The nozzle geometry is the main parameter of the whole injection system chain to realize a better combustion process and so higher efficiency and lower exhaust gas emissions.
Journal Article

Experimental Investigations of a DISI Engine in Transient Operation with Regard to Particle and Gaseous Engine-out Emissions

2015-09-01
2015-01-1990
The investigation of transient engine operation plays a key role of the future challenges for individual mobility in terms of real driving emissions (RDE). A fundamental investigation of the transient engine operation requires the simultaneous application of measurement technologies for an integrated study of mixture formation, combustion process and emission formation. The major prerequisite is the combustion cycle and crank angle resolved analysis of the process for at least several individual consecutive combustion cycles during transient operation. The investigations are performed with a multi cylinder DISI engine at an Engine-in-the-Loop test bench, able to operate the engine in driving cycles as well as within target profiles (e.g. speed and torque profiles). The research project describes the methodology of analyzing elementary transient operational phases, (e.g. different variants of load steps).
Journal Article

Experimental Studies on the Occurrence of Low-Speed Pre-Ignition in Turbocharged GDI Engines

2015-04-14
2015-01-0753
In the present paper the results of a set of experimental investigations on LSPI are discussed. The ignition system of a test engine was modified to enable random spark advance in one of the four cylinders. LSPI sequences were successfully triggered and exhibited similar characteristics compared to regularly occurring pre-ignition. Optical investigations applying a high speed camera system enabling a visualization of the combustion process were performed. In a second engine the influence of the physical properties of the considered lubricant on the LSPI frequency was analyzed. In addition different piston ring assemblies have been tested. Moreover an online acquisition of the unburned hydrocarbon emissions in the exhaust gas was performed. The combination of these experimental techniques in the present study provided further insights on the development of LSPI sequences.
Journal Article

High Pressure Gasoline Direct Injection in Spark Ignition Engines - Efficiency Optimization through Detailed Process Analyses

2016-10-17
2016-01-2244
At part load and wide open throttle operation with stratified charge and lean mixture conditions the Direct Injection Spark Ignition (DISI) engine offers similar efficiency levels compared to compression ignition engines The present paper reports on results of recent studies on the impact of the in-cylinder processes in DISI engines e. g. the injection, the in-cylinder flow, the mixture preparation and the ignition on the combustion, the energy conversion and the exhaust emission behavior. The analyses of the spray behavior, of the in-cylinder flow during compression as well as of the flame propagation have been carried out applying advanced optical measurement techniques. The results enable a targeted optimization of the combustion process with respect to engine efficiency and exhaust emissions. The benefits of an increase in fuel injection pressures up to 100 MPa are discussed.
Technical Paper

Influence of High Frequency Ignition on the Combustion and Emission Behaviour of Small Two-Stroke Spark Ignition Engines

2013-10-15
2013-32-9144
The two-stroke SI engine is the predominant driving unit in applications that require a high power-to-weight ratio, such as handheld power tools. Regarding the latest regulations in emission limits the main development area is clearly a further reduction of the exhaust emissions. The emissions are directly linked to the combustion processes and the scavenging losses. The optimization of the combustion processes, which represents one of the most challenging fields of research, is still one of the most important keys to enhance the thermal efficiency and reduce exhaust emissions. Regarding future emission regulations for small two-stroke SI engines it is inevitable that the emissions of gases causing the greenhouse effect, like carbon dioxide, need to be reduced. As most small SI engines are carburetted and operate open loop, the mixture formation and the amount of residual gas differs from cycle to cycle [1].
Technical Paper

Influence of Injection Nozzle Hole Diameter on Highly Premixed and Low Temperature Diesel Combustion and Full Load Behavior

2010-10-25
2010-01-2109
Diesel engines face difficult challenges with respect to engine-out emissions, efficiency and power density as the legal requirements concerning emissions and fuel consumption are constantly increasing. In general, for a diesel engine to achieve low raw emissions a well-mixed fuel-air mixture, burning at low combustion temperatures, is necessary. Highly premixed diesel combustion is a feasible way to reduce the smoke emissions to very low levels compared to conventional diesel combustion. In order to reach both, very low NOX and soot emissions, high rates of cooled EGR are necessary. With high rates of cooled EGR the NOX formation can be suppressed almost completely. This paper investigates to what extent the trade-off between emissions, fuel consumption and power of a diesel engine can be resolved by highly premixed and low temperature diesel combustion using injection nozzles with reduced injection hole diameters and high pressure fuel injection.
Technical Paper

Influence of Mixture Preparation on Combustion and Emissions Inside an SI Engine by Means of Visualization, PIV and IR Thermography During Cold Operating Conditions

1999-10-25
1999-01-3644
The focus of this work was to determine the influence of spray targeting on temperature distributions, combustion progress and unburned hydrocarbon (HC) emissions at cold operating conditions, and to show the capability of model and full engine tests adapted for different measurement techniques. A comprehensive study applying endoscopic visualization, infrared thermography, combustion and emission measurements was carried out in a 4-stroke 4-cylinder 16-valve production engine with intake port injection during different engine operating conditions including injection angle and timing. In addition 2D visualization and PIV measurements were performed in a back-to-back model test section with good optical access to the intake manifold and the combustion chamber. The measurements in both set ups were in good agreement and show that model tests could lead to useful findings for a real engine.
Technical Paper

Investigation of the Bowl-Prechamber-Ignition (BPI) Concept in a Direct Injection Gasoline Engine at Part Load

1999-10-25
1999-01-3658
In this work a new concept for GDI engines is presented. Concerning a stable ignition a main goal of the so called Bowl-Pre-chamber-Ignition (BPI) process is to reduce the influence of varying flow and spray effects. The characteristic signs of the concept are the dual direct injection, a centrally arranged piston bowl and the special pre-chamber spark plug, that partly dips into the bowl at TDC. During that process most fuel is injected early (intake stroke) into the intake manifold or directly into the cylinder to form a homogeneous pre-mixture. Later in the compression stroke, only a small amount of fuel is injected into the piston bowl. So formed locally stratified charge mixture is transported by the piston bowl to the pre-chamber-spark plug, the pre-chamber dips into the bowl and the mixture flows directly to the spark plug electrode. The result is a very stable lean combustion.
Journal Article

Investigation of the Flow Velocity in the Spark Plug Gap of a Two-Stroke Gasoline Engine using Laser-Doppler-Anemometry

2011-11-08
2011-32-0529
The two-stroke SI engine remains the dominant concept for handheld power tools. Its main advantages are a good power-to-weight ratio, simple mechanical design and low production costs. Because of these reasons, the two-stroke SI engine will remain the dominant engine in such applications for the foreseeable future. Increasingly stringent exhaust emission laws, in conjunction with the drive for more efficiency, have made new scavenging and combustion processes necessary. The main foci are to reduce raw emissions of unburned hydrocarbons via intelligent guidance of the fresh air-fuel mixture and to improve performance to reduce specific emissions. The flow velocity in the electrode gap of the spark plug is of great interest for the ignition of the air-fuel-mixture and the early combustion phase of all kinds of SI engines. In these investigations, the flow velocity in the spark plug gap of a two-stroke gasoline engine with stratified scavenging was measured under various conditions.
Technical Paper

Investigations of Ignition Processes Using High Frequency Ignition

2013-04-08
2013-01-1633
High frequency ignition (HFI) and conventional transistor coil ignition (TCI) were investigated with an optically accessible single-cylinder research engine to gain fundamental understanding of the chemical reactions taking place prior to the onset of combustion. Instead of generating heat in the gap of a conventional spark plug, a high frequency / high voltage electric field is employed in HFI to form chemical radicals. It is generated using a resonant circuit and sharp metallic tips placed in the combustion chamber. The setup is optimized to cause a so-called corona discharge in which highly energized channels (streamers) are created while avoiding a spark discharge. At a certain energy the number of ionized hydrocarbon molecules becomes sufficient to initiate self-sustained combustion. HFI enables engine operation with highly diluted (by air or EGR) gasoline-air mixtures or at high boost levels due to the lower voltage required.
Technical Paper

Investigations of the Formation and Oxidation of Soot Inside a Direct Injection Spark Ignition Engine Using Advanced Laser-Techniques

2010-04-12
2010-01-0352
In this work the formation and oxidation of soot inside a direct injection spark ignition engine at different injection and ignition timing was investigated. In order to get two-dimensional data during the expansion stroke, the RAYLIX-technique was applied in the combustion chamber of an optical accessible single cylinder engine. This technique is a combination of Rayleigh-scattering, laser-induced incandescence (LII) and extinction which enables simultaneous measurements of temporally and spatially resolved soot concentration, mean particle radii and number densities. These first investigations show that the most important source for soot formation during combustion are pool fires, i.e. liquid fuel burning on the top of the piston. These pool fires were observed under almost all experimental conditions.
Journal Article

Investigations on Pre-Ignition in Highly Supercharged SI Engines

2010-04-12
2010-01-0355
This paper presents the results of a study on reasons for the occurrence of pre-ignition in highly supercharged spark ignition engines. During the study, the phenomena to be taken into account were foremost structured into a decision tree according to their physical working principles. Using this decision tree all conceivable single mechanisms to be considered as reasons for pre-ignition could be derived. In order to judge each of them with respect to their ability to promote pre-ignition in a test engine, experimental investigations as well as numerical simulations were carried out. The interdependence between engine operating conditions and pre-ignition frequency was examined experimentally by varying specific parameters. Additionally, optical measurements using an UV sensitive high-speed camera system were performed to obtain information about the spatial distribution of pre-ignition origins and their progress.
X