Refine Your Search

Topic

Search Results

Technical Paper

A new tribology test procedure to investigate ethanol dilution on engine oils

2018-09-03
2018-36-0090
With the worldwide trend towards CO2 emission reduction, renewable fuels such as ethanol are gaining further importance. However, the use of ethanol as a fuel can bring some tribological impacts. Friction and wear of engine parts when lubricants are contaminated with ethanol are not very well understood. Within this scenario, the present paper introduces a new procedure to investigate the ethanol dilution on the performance of engine oils. Friction and wear of actual piston ring and liner were evaluated in a reciprocating test designed to emulate real thermomechanical conditions of both urban and highway car use. In addition to fresh oil, lubricant/ethanol emulsions were prepared carefully following two different procedures - unheated and heated mixing. The former to emulate cold start and “bakery” driving use, the latter to reproduce what happens after the engine heats in normal conditions.
Technical Paper

Abnormal Wear on Piston Top Groove

2003-03-03
2003-01-1102
With the increase of thermal and mechanical loads, some spark ignition (SI) engines may present excessive wear on the piston top groove. The problem was studied first by numerical simulation. Several parameters were found to influence the groove wear. E.g., ring side face roughness and hardness. But the main influence found was the relative attitude between groove flank and ring side face. As the instantaneous attitude varies during the engine cycle, the problem was studied with a commercial ring dynamics computer program and considering thermal and mechanical deformations that occur in the piston during engine operation. The expected groove wear was estimated by the accumulated “wear load” during critical engine operation regimes. Experimental results of engines with groove wear solved by design optimization are shown.
Technical Paper

Calculation of Piston Ring Radial Pressure Distribution from its Measured Free Shape

2012-04-16
2012-01-1322
Piston ring radial pressure effects both the manufacturability of the ring as well as its performance in the engine. While lack of radial contact can cause increased blow-by and lubricant oil consumption, high local contact pressure can cause excessive wear and even scuffing. Current methods to evaluate ring radial pressure fail to identify subtle, local pressure changes. To overcome such limitation, a new method to evaluate ring radial pressure at each peripheral angle was developed. In this experimental procedure, the ring free shape is recorded by an optical device and then this free shape is used as input to code that calculates its radial pressure distribution. In order to validate this method, six different sample variants of ring pressure distribution, (i.e. free shape), have their radial pressure evaluated by two different methods: 1,) the new procedure and 2,) a mechanical jig with 11 circumferentially spaced radial load sensors.
Technical Paper

Comparison of the Potential to Reduce Fuel Consumption by Engine Energy Losses Mapping

2013-10-07
2013-36-0221
Motivated by the demand for the reduction of fuel consumption, in particular to meet the engine energy efficiency goals of the Brazilian incentives legislation (INOVAR AUTO), this paper proposes a method to identify potential for energy efficiency and exemplifies it through three engines of the Brazilian market. The proposed method consists in identify the engine losses in different operating points (speed x load) through combustion mapping and the basic formulations which describe the energy/losses share. These data are grouped into 12 map sections, allowing the identification of the ones with more improvement potential. The baseline engine is 1.6 l naturally aspirated, port injection and was tested with E100 fuel (100% Ethanol). Engine #2 is similar to the baseline but with 4 valves per cylinder and a lower viscosity oil. The engine #3 is a more advanced engine: turbo charged, direct fuel injection, variable valve train and piloted pumps.
Technical Paper

Digital AI Based Formulation Development Platform for Crankcase Lubricants

2022-08-30
2022-01-1096
In lubricating and specialty oil industries, blending is routinely used to convert a finite number of distillation cuts produced by a refinery into a large number of final products matching given specifications regarding viscosity, flash point, pour point or other properties of interest. To find the right component ratio for a blend, empirical or semi-empirical equations linking blend characteristics to those of the individual components are used. Mathematically, the problem of finding the right blend composition boils down to solving a system of equations, often non-linear ones, linking the desired properties of the blend with the properties and percentage of the blend components. This approach can easily be extended to crankcase lubricants, in which case major blend constituents are base oils, additive packages, and viscosity index improvers. Artificial intelligence (AI) tools allow accurate predictions of the basic physicochemical properties of such blends.
Technical Paper

Effect of Lubricant Viscosity and Friction Modifier on Reciprocating Tests

2013-10-07
2013-36-0155
Five automotive oils, with different viscosity grades, were tested under different loads and speeds in a reciprocating test using piston rings and cylinder liners. Starved and fully-flooded conditions were also considered in order to analyze the influence of lubricant supplier in the lubrication regimes, especially in boundary-mixed transition. The expected Stribeck curve behavior was observed, and more interesting visualization appeared when the viscosity value was extracted from the Stribeck abscissa axis. The higher viscosity oils showed lower friction coefficient at low speed/load ratios. Such behavior is usually neglected and may be significant to understand the triblogical behaviour of engineering components. Computer simulation showed similar results, including the “cross-over” speed/load when the lower viscosity oils start to show lower friction.
Technical Paper

Folded Metal Effect on Lubricant Film Thickness and Friction Using a Mixed Lubrication Deterministic Model

2014-09-30
2014-36-0302
Despite the influence of folded metal material on the lubrication performance of engine cylinder liners has been largely investigated, its effect has not been isolated yet in terms of other surface parameters as Sa, Sq, Vo, Rpk etc. In the present contribution, the isolated effect of folded metal on the performance of engine cylinder liners was investigated by comparing the hydrodynamic and asperity contact pressures through a deterministic mixed lubrication model. From that, the friction coefficients and the engine friction losses were also estimated. The topography of a production car engine block was characterized employing a Non-Contact Surface Profiler System. Folded metal was quantified using in-house algorithms, and so its occurrences were digitally removed. Afterwards, the surfaces with and without folded metal were studied with the deterministic model.
Technical Paper

Gasoline Direct Injection Engines - A Bibliographical Review

1997-12-31
973113
Recently, Gasoline Direct Injection (GDI) engine has reached mass production. Fuel economy up to 35% is claimed, at urban driving conditions, by using stratified charge combustion. It also reduces HC emissions at cold start. Most of the car manufactures are researching GDI or even intend to produce it in the near future. If the promised goals are actually achieved, a great change in the development focus for automotive engines will occur. In GDI engines, ultra lean burn, stratified charge combustion is achieved by injecting fuel directly into the chamber during compression stroke (“late Injection”). In contrast, at higher power conditions, the GDI operates in homogeneous charge and fuel is injected during intake stroke (“early injection”). This paper intends to summarize some information about Gasoline Direct Injection engines and possible effects on Piston rings. First, some basic concepts about combustion, judged to be necessary to understand GDI engines, are introduced.
Technical Paper

High Value PVD Top Ring for High Speed Diesel Engines

2008-04-14
2008-01-0793
Due to several market demands of higher wear and scuffing resistance, Duplex PVD (Physical Vapor Deposition) CrN top ring has been used in Heavy Duty Diesel (HDD) engines. The ring comprises a nitrided high chromium stainless steel with a PVD ceramic CrN coating. For High Speed Diesel (HSD) vehicles with lower demands, MAHLE has developed an alternative PVD coated ring, which balances the cost and performance ratio. This alternative, named High Value PVD (HV-PVD), consists of applying the best resistant coating for wear and scuffing, PVD, onto a less costly ring material, Ductile Cast Iron. The HV-PVD top ring has been tested in HSD engines and shown excellent performance. Additional advantages of the HV-PVD are its lower friction coefficient and better tribological compatibility with the cylinder bore materials when compared to the traditional galvanic chrome based coatings. Such features lead to reduced engine friction and lower cylinder wear.
Technical Paper

Impact of Lubricant Viscosity and Additives on Engine Fuel Economy

2014-09-30
2014-36-0507
Many countries are introducing fuel economy regulations in order to reduce the average emissions of light duty vehicles, since fuel consumption of vehicles is an important factor in air pollution. The lubricant has a significant role in reducing friction losses hence the fuel consumption, but the impact depends on the engine operation regime and the manner in which the lubricant components work together to change frictional properties. Different driving cycles are used by different countries and organizations to measure fuel consumption. The most common driving cycles are the European NEDC and the North American FTP-75 vehicle transient cycles. Fuel economy at full load and BSFC (Brake Specific Fuel consumption) are also common methods of measuring engine fuel economy.
Technical Paper

Influence Of Top Ring End Gap Types At Blow-By Of Internal Combustion Engines

1993-10-01
931669
The gas that flows from the combustion chamber to crankcase of internal combustion engines (“Blow-By”) and the reverse flow (“Blow-Back”) have detrimental effects in the engine power, pollutant emissions and lubricant degradation. A main factor to control this flow is the first piston ring gap. The influence of the area defined by the gap, specially of the chamfer at end gap, is analyzed by computer simulation and dynamometer tests. An unusual type of piston ring contact face coating at end gap, allows a reduction of up to 50% in the ring gap area and engine Blow-By.
Technical Paper

Liner Honing Quality Main Characteristics

1992-11-01
921453
The cylinder bore honing quality is an essential factor for a good engine performance and durability. A bad surface finish can result in an excessive lubricant oil consumption, high piston ring wear and scuffing occurrence. In this paper the most important characteristics of bore honing for cast iron cylinders and their influence in the combustion engine performance are described and discussed. Despite its importance, the bore honing is commonly undervalued due to various reasons including the difficulty of a practical but sufficient method of quality qualifying. Some honing commonly misunderstood concepts are detailed and SEM photographs of bore surface from both good and bad finish are presented. At the end of this paper it is also presented a recommendation for a practical evaluation method of honing quality.
Technical Paper

Nitrided Piston Ring Pack for Diesel Engines

1995-10-01
952249
Engine developments have led to higher mechanical and thermal loads on the components, at the same time that lower friction losses are also sought. Therefore, the development of better materials and of surface treatments has received great emphasis. This paper presents the results of dynamometric engine tests with a proposed piston ring pack, composed of a gas nitrided steel top ring, a nitrided gray cast iron second ring and a normal production chrome plated oil ring. The proposed pack showed very low wear when applied to a medium duty diesel engine, besides being a cost-effective alternative to the conventional pack with moly coated and chrome plated (respectively in the top and second) rings. The proposed pack also caused very low wear on the cylinder bore, specially near the TDC, where the bore wear is usually maximum.
Technical Paper

Nitrited Steel Piston Rings for Internal Combustion Engines

1994-11-01
942394
The evolution of internal combustion engines has led to friction reduction as well as to gaseous emissions reduction, demanding the use of narrower rings. Nodular cast iron is used satisfactorily for compression piston rings, with wear resistant coatings to improve their durability. However, for more severe applications and rings narrower than 1.2mm, even the nodular cast iron mechanical resistance is not enough. In this way, the use of steel is recommended, which may have its tribological properties improved by the nitriding thermochemical treatment. This paper presents the characteristics of the materials and of the nitriding process of compression and oil control rings as well as bench and dynamometric test results run during the development of these products.
Technical Paper

Optimizing the Piston/Bore Tribology: The Role of Surface Specifications, Ring Pack, and Lubricant

2020-09-15
2020-01-2167
The present study looks into different possibilities for tribological optimization of the piston/bore system in heavy duty diesel engines. Both component rig tests and numerical simulations are used to understand the roles of surface specifications, ring pack, and lubricant in the piston/bore tribology. Run-in dynamics, friction, wear and combustion chamber sealing are considered. The performance of cylinder liners produced using a conventional plateau honing technology and a novel mechanochemical surface finishing process - ANS Triboconditioning® - is compared and the importance of in-design “pairing” of low-viscosity motor oils with the ring pack and the cylinder bore characteristics in order to achieve maximum improvement in fuel economy without sacrificing the endurance highlighted. A special emphasis is made on studying morphological changes in the cylinder bore surface during the honing, run-in and Triboconditioning® processes.
Technical Paper

Piston Ring Conformability in a Distorted Bore

1996-02-01
960356
Some different equations to calculate the maximum deformation that a given ring can conform to, are found in the bibliography. These equations do not consider the ring end gap and ovality, gas pressure acting on it, nor the actual bore shape, but only the maximum amplitude for a given term (from a Fourier Series that describes the bore shape). A more exact prediction can be done with Finite Element tools or specific codes for piston ring simulation; those approaches are not usually carried out, except in special cases or in more fundamental studies. Experimental measurements were carried out to verify the simple conformability criteria. Deformed shapes were produced in a static jig and areas of “non contact”, between ring and the deformed bore shapes, were measured. Based on these measurements, a semi-empirical equation is proposed to calculate the limit of piston ring conformability.
Technical Paper

Piston Ring Pack and Cylinder Wear Modelling

2001-03-05
2001-01-0572
Wear of piston ring and cylinder was modelled through a computer code that calculates the hydrodynamic and roughness contact pressures acting on the contact surfaces. Both pressures are fully and coupled solved through, respectively, Reynolds equation and Greenwood-Williamson model. Piston secondary motion and piston groove thermal deformations are considered. The latter was discovered to be fundamental in defining the top ring worn profile. Due to the rough contact pressures, the model predicts material removal from both piston ring and cylinder surfaces and recalculates the system, hence simulating the evolution of the worn sliding surface of both parts. The predicted wear of the piston ring pack and the cylinder wall are compared with a medium duty diesel engine tested for 750 hours in dynamometer.
Journal Article

Piston Ring Tribological Challenges on the Next Generation of Flex-fuel Engines

2010-05-05
2010-01-1529
With the current use of bio-renewable fuel, the application of Ethanol in Flex-Fuel vehicles presents a very low CO2 emission alternative when the complete cycle, from plantation, fuel production, till vehicle use, is considered. In Brazil more than 80% of the car production is composed of Flex-Fuel vehicles. Due to the lower heating content of the Ethanol, more aggressive combustion calibrations are used to obtain the same engine power than when burning gasoline. Such Ethanol demands, associated with the continuous increase of engine specific power has lead to thermo-mechanical loads which challenges the tribology of piston rings. The ethanol use brings also some specific tribological differences not very well understood like fuel dilution in the lube oil, especially on cold start, corrosive environment etc. Under specific driving conditions, incipient failures like spalling on nitrided steel top rings have been observed.
Technical Paper

Powertrain Friction Reduction by Synergistic Optimization of Cylinder Bore Surface and Lubricant - Part 2: Engine Tribology Simulations and Tests

2021-09-21
2021-01-1217
In the present work, a system approach to the tribological optimization of passenger car engines is demonstrated. Experimental data and simulation results are presented to demonstrate the role of surface specifications, ring pack, and lubricant on the piston/bore tribology. The importance of in-design “pairing” of low-viscosity motor oils with the ring pack and the cylinder bore characteristics in order to achieve maximum reduction in GHG emissions and improvement in fuel economy without sacrificing the endurance is elucidated. Earlier motored friction data for two different gasoline engines - Ford Duratec and Mercedes Benz M133 - using motor oils of different viscosity grades are now rationalized using AVL EXCITE® piston/bore tribology simulations. The main difference between the engines was the cylinder bore surface: honed cast iron vs thermally sprayed, and the valve train type: direct-acting mechanical bucket (DAMB) vs roller finger follower (RFF).
Technical Paper

Powertrain Friction Reduction by Synergistic Optimization of the Cylinder Bore Surface and Lubricant Part 1: Basic Modelling

2021-09-21
2021-01-1214
The piston assembly is the major source of tribological inefficiencies among the engine components and is responsible for about 50% of the total engine friction losses, making such a system the main target element for developing low-friction technologies. Being a reciprocating system, the piston assembly can operate in boundary, mixed and hydrodynamic lubrication regimes. Computer simulations were used to investigate the synergistic effect between low viscosity oils and cylinder bore finishes on friction reduction of passenger car internal combustion engines. First, the Reynolds equation and the Greenwood & Tripp model were used to investigating the hydrodynamic and asperity contact pressures in the top piston ring. The classical Reynolds works well for barrel-shaped profiles and relatively thick oil film thickness but has limitations for predicting the lubrication behavior of flat parallel surfaces, such as those of Oil Control Ring (OCR) outer lands.
X