Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Comparison Between NHTSA Crash Test Data and CRASH3 Frontal Stiffness Coefficients

1990-02-01
900101
The appropriateness of the set of eight frontal stiffness coefficients used by the CRASH3 program to estimate vehicle deformation energy (and to subsequently derive estimates of vehicle delta-V) is examined. This examination consists of constructing so-called CRASH energy plots based on 402 frontal fixed barrier impact tests contained in the NHTSA's Vehicle Test Center Data Base (VTCDB) digital tape file. It is concluded that the use of category coefficients within the CRASH3 program can result in large delta-V errors, reaffirming the inappropriateness of this program for use in individual accident reconstructions. The use of the CRASH3 category stiffness coefficients is seen to generally overestimate vehicle energy absorption for vehicles with small amounts of frontal crush and to underestimate vehicle energy absorption for vehicles sustaining large crush.
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
Technical Paper

Application of Kinematic Concepts to Side Impact Injury Analysis

1990-02-01
900375
An understanding of fundamental kinematic relationships among the several deforming surfaces of side-impacting bullet and target vehicle, occupant protection system and occupant is fundamental to rational design of crash injury counter-measures. Unfortunately, such understanding is not easy to achieve. Side impacts address the full range of bodily contacts and injuries in a way that challenges analysis. Each bodily area and organ requires individual consideration for adequate injury protection. This paper presents a simplified graphical analysis of occupant kinematics and injury exposure applied specifically to the NHTSA-proposed crabbed moving deformable barrier (MDB) compartment impact, as described in NHTSA's Notice of Proposed Rulemaking (NPRM) for Federal Motor Vehicle Safety Standard (FMVSS) 214, issued in January of 1988 [NHTSA 1988 (1)*]. Projections are offered regarding the potential of thoracic injury counter-measures.
Technical Paper

Crash Protection in Near-Side Impact - Advantages of a Supplemental Inflatable Restraint

1989-02-01
890602
Collision Safety Engineering, Inc. (CSE), has developed a test prototype system to protect occupants during lateral impacts. It is an inflatable system that offers the potential of improved protection from thoracic, abdominal and pelvic injury by moving an impact pad into the occupant early in the crash. Further, it shows promise for head and neck protection by deployment of a headbag that covers the major target areas of B-pillar, window space, and roofrail before head impact. Preliminary static and full-scale crash tests suggest the possibility of injury reduction in many real-world crashes, although much development work remains before the production viability of this concept can be established. A description of the system and its preliminary testing is preceded by an overview of side impact injury and comments on the recent NHTSA Rule Making notices dealing with side-impact injury.
Technical Paper

Crush Energy in Accident Reconstruction

1986-02-24
860371
Vehicle accident reconstruction methods based on deformation energy are argued to be an increasingly valuable tool to the accident reconstructionist, provided reliable data, reasonable analysis techniques, and sound engineering judgement accompany their use. The evolution of the CRASH model of vehicle structural response and its corresponding stiffness coefficients are reviewed. It is concluded that the deformation energy for an accident vehicle can be estimated using the CRASH model provided that test data specific to the accident vehicle is utilized. Published stiffness coefficients for vehicle size categories are generally not appropriate. For the purpose of estimating vehicle deformation energy, a straight-forward methodology is presented which consists of applying the results of staged crash tests. The process of translating crush profiles to estimates of vehicle deformation energies and velocities is also discussed.
Technical Paper

Estimating Vehicle Deformation Energy for Vehicles Struck in the Side

1998-02-23
980215
The reconstruction of accidental impacts to the side structure of one or more accident vehicles often incorporates estimates of the energy absorbed by laterally struck vehicle(s). Such estimates generally involve considerably more issues than does the assessment of frontal or rear impact deformation energy. The sides of vehicles are, compared to the usual striking object, relatively broad, and they contain zones of varying stiffness supported by collapsible box structures. Side stiffnesses can vary widely, depending upon impact geometry. Most side impact crash tests that can readily be used to make estimates of side stiffness have been conducted by the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

Evaluation of Seat Back Strength and Seat Belt Effectiveness in Rear End Impacts

1987-11-01
872214
The issues of front seat energy absorption and seat belt effectiveness are investigated first through the review of prior experimental and analytical studies of rear impact dynamics. These prior studies indicate that the current energy absorption characteristic of seats is a safety benefit. Prior efforts to construct a rigidized seat indicate that such designs are likely to be impractical due to excessive weight and cost. Additionally, these studies indicate that seat belts provide an important safety function in rear impacts. Static tests of production seats were conducted, added to an existing data base, and analyzed to better understand the strength and energy absorbing characteristics of production seats. Crash test results from the New Car Assessment Program as well as earlier test programs were analyzed to describe the response of occupants and seats in rear impact and the protective function of seat belts in such collisions.
Technical Paper

Injury and Intrusion in Side Impacts and Rollovers

1984-02-01
840403
The relationship between occupant crash injury and occupant compartment intrusion is seen in the perspectives of the velocity-time analysis and the NCSS statistical data for two important accident injury modes, lateral and rollover collisions. Restraint system use, interior impacts, and vehicle design features are considered. Side impact intrusion is analyzed from physical principles and further demonstrated by reference to staged collisions and NCSS data. Recent publications regarding findings of the NCSS data for rollovers, as well as the NCSS data itself, are reviewed as a background for kinematic findings regarding occupant injury in rollovers with roof crush.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
Technical Paper

Rear Stiffness Coefficients Derived from Barrier Test Data

1991-02-01
910120
Rear impacts in the crash test data base compiled by the NHTSA are analyzed and compared to the CRASH3 rear stiffness coefficients. The CRASH3 values do not represent the test data adequately. This is because the values were derived from limited data, and because some of the rear moving barrier test data were miscoded as fixed barrier tests. A review of the larger NHTSA data base does not support the CRASH3 assumption that vehicles of similar size (wheelbase) have similar rear stiffness characteristics. Therefore, it is important when reconstructing individual accidents to use crash test data specific to the vehicles involved. Repeated rear fixed barrier test data on four vehicles are analyzed to study the data trend at speeds below and above the NHTSA test data. Constant stiffness and constant force models are compared and a combination of the two is shown to fit available test data.
Technical Paper

Response of Out-of-Position Dummies in Rear Impact

1994-03-01
941055
Field accident data suggest that a significant number of occupants involved in rear impacts may be positioned at impact other than in the “Normal Seated Position” - the optimum restraint configuration that has been used almost exclusively in published seat testing. Pre-impact vehicle acceleration from braking, swerving, or a prior frontal impact could cause an occupant to be leaning forward at the instant of the collision, creating a situation where the vehicle “ride-up” potential would be limited. No rear impact tests involving yielding, production-type seats with forward-leaning dummies are found in the literature. Thirty rear-impact sled tests with a forward-leaning, “Out-of-Position” Hybrid III dummy are presented. Tests were performed with a calibrated seat set in either the rigidified or yielding configuration and with the dummy either unbelted or restrained by a production three-point belt system. Test speeds ranged from 5 to 20 mph.
Technical Paper

The Assessment of the Societal Benefit of Side Impact Protection

1990-02-01
900379
This paper summarizes work relating to the assessment of societal benefits of side impact protection. National Crash Severity Study (NCSS) and National Accident Sampling System (NASS) accident data technigues were reviewed with respect to the reliability of output information concerning the distribution of side impact accidents by impact severity and relationships between injury and impact severity. NCSS and NASS are confounded by errors and inadequacies, primarily as a result of improper accident reconstruction based upon the CRASH computer program. Based on review of several sample cases, it is believed that the NCSS/NASS files underestimate Lower severities and overestimate higher severities in side impact, with delta-V errors probably overestimated by 25-30 percent in the case of the more serious accidents. These errors cannot be properly quantified except on a case-by-case basis. They introduce unknown biases into NCSS/NASS.
Technical Paper

The Efforts of the National Highway Traffic Safety Administration in the Development of Advanced Passive Protection Systems and Child Restraint Systems

1974-02-01
740580
This report presents an overview of the Occupant Packaging research program within the National Highway Traffic Safety Administration. The report discusses the program's efforts to establish the feasibilities of practical methods for providing the highest levels of occupant protection. In the area of frontal impact protection, work is progressing on advanced driver air bag systems, on a bag and bolster approach to passenger protection, on the development of improved inflation techniques for inflatables and on the passive application of the air belt concept. Efforts in the other areas of side, rear, and rollover protection are discussed as are NHTSA's efforts in child restraint research.
Technical Paper

Velocity Histories as an Accident Reconstruction Tool

1985-02-25
850249
The objective of this paper is to illustrate how the use of velocity diagrams of both vehicle and occupant motion can be of great assistance to the accident reconstructionist. The technique, best applied in the early stages of the reconstruction process, is recommended to (1) reduce the likelihood of arithmetic or equation misapplication errors, (2) permit estimates for such accident parameters as mutual crush and impact duration, and (3) provide insights into the critical issues of the reconstruction. For analyzing occupant motion, reasonably realistic models of compartment response are proposed based on either a cosine model or a model derived from the CRASH computer programs.
X