Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Finite Element Lower Extremity and Pelvis Model for Predicting Bone Injuries due to Knee Bolster Loading

2004-06-15
2004-01-2130
Injuries to the knee-thigh-hip (KTH) complex in frontal motor vehicle crashes are of substantial concern because of their frequency and potential to result in long-term disability. Current frontal impact Anthropometric Test Dummies (ATDs) have been shown to respond differently than human cadavers under frontal knee impact loading and consequently current ATDs (and FE models thereof) may lack the biofidelity needed to predict the incidence of knee, thigh, and hip injuries in frontal crashes. These concerns demand an efficient and biofidelic tool to evaluate the occurrence of injuries as a result of KTH loading in frontal crashes. The MADYMO human finite element (FE) model was therefore adapted to simulate bone deformation, articulating joints and soft tissue behavior in the KTH complex.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Biomechanical Considerations for Assessing Interactions of Children and Small Occupants with Inflatable Seat Belts

2013-11-11
2013-22-0004
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Farside Impacts

2006-11-06
2006-22-0012
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Frontal Impacts

2003-10-27
2003-22-0017
The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that “crisscrossed” the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts.
Technical Paper

Characterization of Knee-Thigh-Hip Response in Frontal Impacts Using Biomechanical Testing and Computational Simulations

2008-11-03
2008-22-0017
Development and validation of crash test dummies and computational models that are capable of predicting the risk of injury to all parts of the knee-thigh-hip (KTH) complex in frontal impact requires knowledge of the force transmitted from the knee to the hip under knee impact loading. To provide this information, the knee impact responses of whole and segmented cadavers were measured over a wide range of knee loading conditions. These data were used to develop and help validate a computational model, which was used to estimate force transmitted to the cadaver hip. Approximately 250 tests were conducted using five unembalmed midsize male cadavers. In these tests, the knees were symmetrically impacted with a 255-kg padded impactor using three combinations of knee-impactor padding and velocity that spanned the range of knee loading conditions produced in FMVSS 208 and NCAP tests. Each subject was tested in four conditions.
Technical Paper

Development and Testing of a Prototype Pregnant Abdomen for the Small-Female Hybrid III ATD

2001-11-01
2001-22-0003
A new prototype pregnant abdomen for the Hybrid III small-female ATD is being developed and has been evaluated in a series of component and whole-dummy tests. The new abdomen uses a fluid-filled silicone-rubber bladder to represent the human uterus at 30-weeks gestation, and incorporates anthropometry based on measurements of pregnant women in an automotive driving posture. The response of the new pregnant abdomen to rigid-bar, belt, and close-proximity airbag loading closely matches the human cadaver response, which is thought to be representative to the response of the pregnant abdomen. In the current prototype, known as MAMA-2B (Maternal Anthropomorphic Measurement Apparatus, version 2B), the risk of adverse fetal outcome is determined by measuring the peak anterior pressure within the fluid-filled bladder.
Technical Paper

Development and Validation of an Older Occupant Finite Element Model of a Mid-Sized Male for Investigation of Age-related Injury Risk

2015-11-09
2015-22-0014
The aging population is a growing concern as the increased fragility and frailty of the elderly results in an elevated incidence of injury as well as an increased risk of mortality and morbidity. To assess elderly injury risk, age-specific computational models can be developed to directly calculate biomechanical metrics for injury. The first objective was to develop an older occupant Global Human Body Models Consortium (GHBMC) average male model (M50) representative of a 65 year old (YO) and to perform regional validation tests to investigate predicted fractures and injury severity with age. Development of the GHBMC M50 65 YO model involved implementing geometric, cortical thickness, and material property changes with age. Regional validation tests included a chest impact, a lateral impact, a shoulder impact, a thoracoabdominal impact, an abdominal bar impact, a pelvic impact, and a lateral sled test.
Technical Paper

Development of a Finite Element Model to Study the Effects of Muscle Forces on Knee-Thigh-Hip Injuries in Frontal Crashes

2008-11-03
2008-22-0018
A finite element (FE) model with knee-thigh-hip (KTH) and lower-extremity muscles has been developed to study the potential effects of muscle tension on KTH injuries due to knee bolster loadings in frontal crashes. This model was created by remeshing the MADYMO human lower-extremity FE model to account for regional differences in cortical bone thickness, trabecular bone, cortical bone with directionally dependent mechanical properties and Tsai-Wu failure criteria, and articular cartilage. The model includes 35 Hill-type muscles in each lower extremity with masses based on muscle volume. The skeletal response of the model was validated by simulating biomechanical tests without muscle tension, including cadaver skeletal segment impact tests documented in the literature as well as recent tests of seated whole cadavers that were impacted using knee-loading conditions similar to those produced in FMVSS 208 testing.
Technical Paper

Development of an Improved Airbag-Induced Thermal Skin Burn Model

1999-03-01
1999-01-1065
The UMTRI Airbag Skin Burn Model has been improved through laboratory testing and the implementation of a more flexible heat transfer model. A new impinging jet module based on laboratory measurements of heat flux due to high-velocity gas jets has been added, along with an implicit finite-difference skin conduction module. The new model can be used with airbag gas dynamics simulation outputs, or with heat flux data measured in the laboratory, to predict the potential for thermal skin burn due to exposure to airbag exhaust gas.
Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

2016-11-07
2016-22-0014
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
Technical Paper

Effects of Hip Posture on the Frontal Impact Tolerance of the Human Hip Joint

2003-10-27
2003-22-0002
… The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal impacts. To investigate this hypothesis, dynamic hip tolerance tests were conducted on the left and right hips of 22 unembalmed cadavers. In these tests, the knee was dynamically loaded in the direction of the long axis of the femur and the pelvis was fixed to minimize inertial effects. Thirty-five successful hip tolerance tests were conducted. Twenty-five of these tests were performed with the hip oriented in a typical posture for a seated driver, or neutral posture, to provide a baseline measure of hip tolerance. The effects of hip posture on hip tolerance were quantified using a paired-comparison experimental design.
Technical Paper

Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes

2010-11-03
2010-22-0005
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p≺0.0001) at both AIS2+ and AIS3+ injury levels. Airbag deployment does not substantially affect the percentage of occupants who sustain abdominal injuries in frontal impacts (p=0.6171), while belt use reduces the percentage of occupants sustaining abdominal injury in both nearside and farside crashes (p≺0.0001). Right-front passengers in right-side impacts have the highest risk (1.91%) of AIS 3+ abdominal injury (p=0.03). The percentage of occupants with AIS 3+ abdominal injuries does not vary with age for frontal, nearside, or farside impacts.
Technical Paper

Methods for Laboratory Investigation of Airbag-Induced Thermal Skin Burns

1999-03-01
1999-01-1064
Two new techniques for investigating the thermal skin-burn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airbag thermal burn potential. Measurements from the reduced-volume procedure are complemented by data obtained using two gas-jet simulators, called heatguns. Gas is vented in controlled bursts from a large, heated, pressurized tank of gas onto a target surface. Heat flux measurements on the target surface have been used to develop quantitative models of the relationships between gas jet characteristics and burn potential.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2017-22-0004
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

Predicting the Effects of Muscle Activation on Knee, Thigh, and Hip Injuries in Frontal Crashes Using a Finite-Element Model with Muscle Forces from Subject Testing and Musculoskeletal Modeling

2009-11-02
2009-22-0011
In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

2002-11-11
2002-22-0011
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
X