Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Diagnostic Method for a Landing Gear and Doors Actuation System Based on a State Machine Control Algorithm

2016-09-20
2016-01-2046
A Landing Gear Control and Actuation System (LGCAS) is one of the most complex aircraft systems. Due to the large landing gear masses and high performance requirements, aircraft hydraulic power with multiple hydraulic actuators and valves is used to provide system dynamic. LGCAS also requires a electrical source of energy for the electro-mechanical components, sensors and electronic control unit. For many years, correct fault isolation in a complex kinematic system, such as an aircraft landing gear actuation system, has been a great challenge with limited success. The fault isolation design challenge rests on the fact that landing gear control and actuation system has many so called “passive” components, whose basic function cannot be continuously monitored without additional sensors, transducers, and designated health monitoring equipment.
Technical Paper

Hardware Design and Implementation of the Landing Gear Control Algorithm

2014-09-16
2014-01-2186
Since the early 1970s, when microprocessors became commercially available, they quickly became a common part of all aircraft control and indication systems. With an ever-increasing number of microprocessor-based airborne applications, safety regulations and software standards like RTCA DO-178 evolved, demanding rigorous requirements and processes for software development, testing, life cycle, and certification. Over the years, as development of aerospace software applications increased, engineering costs of development and product certification costs exponentially increased, having a significant impact on the market. Landing Gear Actuation system is one of many aircraft systems whose control functions are based on microprocessors and software application.
Journal Article

Lightning Effects on Hydraulic Transport Elements in Composite Aircraft

2011-10-18
2011-01-2760
In this study, lightning effects on hydraulic transport elements in composite aircraft have been considered for the first time. Based on recent test results and analysis, several forms of possible structural damage and system component failures are presented. A unique approach in analysis has been taken to account that hydraulic transport elements, as a part of several aircraft systems, have a common interface with electrical wiring, and become complex electric networks. When an aircraft is exposed to a direct lightning strike, a metal skin on the wings and fuselage will conduct lightning currents in a way that only a small amount of induced electromagnetic energy will be present on hydraulic transport elements. So, in the past, hydraulic tubes, actuators, manifolds, and all other hydro-mechanical devices, as parts of various aircraft systems, have never been considered as lightning sensitive components.
Journal Article

One Approach to the Aircraft Brake Control System Numeric Identification Method

2015-09-27
2015-01-2693
Aircraft anti-skid brake control system is considered one of the most complex aircraft systems whose performance depends not only on subsystem parameters but rather on many other external conditions and physical parameters which are difficult to control and predict. Over the years aircraft brake control system performance and fault diagnostics have been simulated and analyzed from various aspects. Based on the task to enhance aircraft brake control system diagnostic methods, this article presents one approach to mathematical modeling and a numeric identification method of the hydro-mechanical brake control components. For any complex system behavioral or performance analysis approach, system modeling and simulation are the most common tools. Most often, the complete system model is unknown, and only simple segments of the unknown system or a small number of subsystem components may be known in a form of transfer function with static and dynamic characteristics.
Technical Paper

Power Dissipation Optimization Process in Aircraft Secondary Power Distribution Systems

2013-09-17
2013-01-2275
In a more electric aircraft, with strong demand for numerous independently controlled AC and DC power utilities, a new concept of secondary power distribution system has emerged. Based on common core software applications, local area network, and electronic modules with Solid State Power Controllers (SSPC), secondary power distribution system becomes a network of independent Power Distribution Units (PDU), installed in various locations throughout aircraft fuselage. This new decentralized concept has many benefits, including wiring weight reduction, electronic over-current and arc fault protection, and software controlled circuit breakers status and indication. An attempt to optimize allocation of SSPCs to aircraft electric utilities and the number of electronic Power Modules in Power Distribution Units has become a more complex problem. Each Power Distribution Unit contains several Power Electronics modules, where each module has its own power dissipation limit.
Technical Paper

Power Dissipation Optimization for Solid State Power Control Modules in the Aircraft Secondary Power Distribution System

2018-10-30
2018-01-1930
In the last two decades, an aerospace industry trend in the secondary power distribution concept has been dominated by power electronics technology which includes power converters and Power Control Modules based on Solid State Power Control (SSPC) switching elements. These Power Control Modules, grouped around microprocessor based controllers and combined in a single electronic chassis, have become a backbone of electrical power distribution systems on all major commercial and military transport aircraft. Due to the resistive properties of the semiconductor-based SSPC devices, whose behaviors can be described as nonlinear functions of ambient operating temperature, power distribution system integration with SSPCs is challenged and heavily affected by operating temperatures and power dissipation limits. Although aircraft compartments where Power Control Modules are located are considered temperature and pressure controlled, high ambient operating temperatures are possible and expected.
Technical Paper

Power Transfer Protocol for Variable Frequency Aircraft Electrical Power Systems

2024-03-05
2024-01-1915
Since the early days of aviation, when an AC-type generator became a primary source of electrical power for all aircraft systems, the demand for electrical power has steadily grown. Following rapid technology and scientific advancements in the aerospace industry, the complexity and criticality of all aircraft systems have increased to the point where multiple independent and isolated electrical power sources are required. In such an environment, with two or more variable-frequency AC-type generators that can be simultaneously activated to provide electrical power to the aircraft power distribution system, a safe power transfer process becomes a major priority. This means that any two independent aircraft AC power sources with different frequencies or phase angles cannot be connected simultaneously to a common power bus.
Journal Article

Turbojet Engine Parameters Calculation Based on Fuel Flow and Exhaust Gas Temperature

2021-03-02
2021-01-0029
The aircraft jet engine is one of the most complex multivariable systems with multiple inputs and multiple outputs. To attempt to optimize control functions or to address diagnostic problems, a detailed knowledge of all jet engine design parameters and performances is required. Although jet engines have been around for almost a century, there are only a few companies in the world presently designing and manufacturing them; as such these companies possess detailed knowledge of all relevant design characteristics and performance parameters. In the event where jet engine technical details are unknown, or only a few of them are known from manufacturer’s catalogues, the challenge becomes how to calculate and extrapolate critical performance parameters based on only fuel flow, jet exhaust temperature and total thrust.
X