Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

1995-10-01
952465
Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
Technical Paper

Effects of Swirl/Tumble Motion on In-Cylinder Mixture Formation in a Lean-Burn Engine

1996-10-01
961994
Flow measurement by laser Doppler velocimetry and visualization of in-cylinder fuel vapor motion by laser induced fluorescence were performed for various types of intake systems that generated several different combinations of swirl and tumble ratios. The measured results indicate that certain swirl and tumble ratios are needed to achieve charge stratification in the cylinder. Performance tests were also carried out to determine the combustion characteristics of each intake system. Then, the features of combustion when the charge stratification was realized was analyzed.
Technical Paper

Laser Shadowgraphic Analysis Of Knocking In S.I. Engine

1984-01-01
845001
High-speed laser shadowgraph cinematography synchronized with measurement of the pressure in the combustion chamber was employed in order to observe the location and magnitude of autoignition that causes cylinder gas oscillation. The use of a laser light source enabled the exposure time to be set at 0.8 microseconds with a high film speed of 30,000 f.p.s. . An image processing system was also used to determine the exact location of autoignited gases. The results clarified that the location of autoignition varied cycle-by-cycle. In some cycles it occurred in the vicinity of the cylinder wall, in some cycles it originated in the middle of the end gas and just in front of the propagating flame. It was also made clear that the occurrence of autoignition at a traceknock spark timing did not always bring about an oscillation in the chamber gases in case where the speed of the autoignited gas did not exceed a certain value.
Technical Paper

Optimization of Hydrogen Jet Configuration by Single Hole Nozzle and High Speed Laser Shadowgraphy in High Pressure Direct Injection Hydrogen Engines

2011-08-30
2011-01-2002
A new ignition-combustion concept named PCC (Plume Ignition Combustion Concept), which ignite rich mixture plume in the middle of injection period or right after injection of hydrogen is completed, is proposed by the authors in order to reduce NOx emissions in high engine load conditions with minimizing trade-offs on thermal efficiency. In this study fundamental requirements of hydrogen jet to optimize PCC are investigated by using single and multi-hole nozzle with a combination of high speed laser shadowgraphy to visualize propagating flame. As a result, it was infered that igniting the mixture plume in the middle of injection period with minimizing jet penetration to chamber wall is effective reducing NOx formation even further.
X